109
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Prediction of proximal femur fracture risk from DXA images based on novel fracture indexes

ORCID Icon, , &
Pages 205-216 | Received 11 Nov 2019, Accepted 03 Oct 2020, Published online: 30 Apr 2021

References

  • Aloia JF, McGowan D, Erens E, Miele G. 1992. Hip fracture patients have generalized osteopenia with a preferential deficit in the femur. Osteoporosis Int. 2:88–93. doi:10.1007/BF01623842.
  • Aspray T, Prentice A, Cole TJ, Sawo Y, Reeve J, Francis RM. 2009. Low bone mineral content is common but osteoporotic fractures are rare in elderly rural Gambian women. J Bone Miner Res. 11(11):1019–1025. doi:10.1002/jbmr.5650110720.
  • Beck TJ, Looker AC, Ruff CB, Sievanen H, Wahner HW. 2000a. Structural trends in the aging femoral neck and proximal shaft: analysis of the third national health and nutrition examination survey dual‐energy X‐ray absorptiometry data. J Bone Miner Res. 15(12):2297–2304. doi:10.1359/jbmr.2000.15.12.2297.
  • Beck TJ, Looker AC, Ruff CB, Sievanen H, Wahner HW. 2000b. Structural trends in the ageing femoral neck and proximal shaft: analysis of the third national health and nutrition examination survey dual-energy X-ray absorptiometry data. J Bone Miner Res. 15:2297–2308.
  • Beck TJ, Mourtada FA, Ruff CB, Scott JC, Kao GL. 1998. Experimental testing of a DEXA-derived curved beam model of the proximal femur. J Orthop Res. 16:394–398. doi:10.1002/jor.1100160317.
  • Beck TJ, Oreskovic TL, Stone KL, Ruff CB, Ensrud K, Nevitt MC, Genant HK, Cummings SR. 2001a. Structural adaptation to changing skeletal load in the progression toward hip fragility: the study of osteoporotic fractures. J Bone Miner Res. 16:1108–1119. doi:10.1359/jbmr.2001.16.6.1108.
  • Beck TJ, Ruff CB, Warden KE, Scott WW Jr, Rao GU. 1990. Predicting femoral neck strength from bone mineral data. A structural approach. Invest Radiol. 25:6–18. doi:10.1097/00004424-199001000-00004.
  • Beck TJ, Stone KL, Oreskovic TL, Hochberg MC, Nevitt MC, Genant HK, Cummings SR. 2001b. Effects of current and discontinued estrogen replacement therapy on hip structural geometry: the study of osteoporotic fractures. J Bone Miner Res. 16:2103–2110. doi:10.1359/jbmr.2001.16.11.2103.
  • Bell K, Loveridge N, Power J, Garrahan N, Stanton M, Lunt M, Meggitt B, Reeve J. 1999. Structure of the femoral neck in hip fracture: cortical bone loss in the inferoanterior to superoposterior axis. J Bone Miner Res. 14:112–120.
  • Bjørgul K, Reikerås O. 2007. Incidence of hip fracture in southeastern Norway: a study of 1,730 cervical and trochanteric fractures. Int Orthop. 31(5):665–669. doi:10.1007/s00264-006-0251-3.
  • Burr DB, Turner CH. 2003. Biomechanics of bone. In: Favus MJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 5th ed. Washington (DC): American Society for Bone and Mineral Research; p. 58–64.
  • Chevalley T, Rizzoli R, Nydegger V, Slosman D, Tkatch L, Rapin C-H, Vasey H, Bonjour J-P. 1991. Preferential Low bone mineral density of the femoral neck in patients with a recent fracture of the proximal femur. Osteoporosis Int. 1:147–154. © 1991 European Foundation for Osteoporosis. doi:10.1007/BF01625444.
  • Cody DD, Gross GJ, Hou FJ, Spencer HJ, Goldstein SA, Fyhrie DP. 1999. Femoral strength is better predicted by finite element models than QCT and DXA. J Biomech. 32:1013–1020. doi:10.1016/S0021-9290(99)00099-8.
  • Cooper C, Campion G, Melton LJD. 1992. Hip fractures in the elderly: A world-wide projection. Osteoporosis Int. 2:285–289. doi:10.1007/BF01623184.
  • Crabtree NJ, Kroger H, Martin A, Pols HAP, Lorenc R, Nijs J, Stepan JJ, Falch JA, Miazgowski T, Grazio S, et al. 2002. Improving risk assessment: hip geometry, bone mineral distribution and bone strength in hip fracture cases and controls. The EPOS study. Osteoporos Int. 13:48–54.
  • Cummings SR, Black DM, Nevitt MC. 1993a. Bone density at various sites for prediction of hip fractures. Lancet. 341:72–75. doi:10.1016/0140-6736(93)92555-8.
  • Cummings SR, Black DM, Nevitt MC, Browner W, Cauley J, Ensrud K, Genant HK, Palermo L, Scott J, Vogt TM. 1993b. Bone density at various sites for prediction of hip fractures. Lancet. 341:72–75.
  • Cummings SR, Black DM, Nevitt MC, Browner WS, Cauley JA, Genant HK, Mascioli SR, Scott JC, Seeley DG, Steiger P, SOF Research Group, et al.. 1990. Appendicular bone density and age predict hip fracture in women. JAMA. 263(5):665–668. doi:10.1001/jama.1990.03440050059033.
  • Dall’Ara E, Eastell R, Viceconti M, Pahr D, Yang L. 2016. Experimental validation of DXA-based finite element models for prediction of femoral strength. J Mech Behav Biomed Mater. 63:17–25. doi:10.1016/j.jmbbm.2016.06.004.
  • Deng C, Gillette JC, Derrick TT. 2018 1. Femoral neck stress in older adults during stair ascent and descent. J Appl Biomech. 34(3):191–198. doi:10.1123/jab.2017-0122.
  • Dragomir-Daescu D, Op Den Buijs J, McEligot S, Dai Y, Entwistle RC, Salas C, Melton LJ, Bennet KE, Khosla S, Amin S, et al. 2011. Robust QCT/FEA models of proximal femur stiffness and fracture load during a sideways fall on the hip. Ann Biomed Eng. 39(2):742–755. doi:10.1007/s10439-010-0196-y.
  • Duan YB, Beck TJ, Wang XF, Seeman E. 2003. Structural and biomechanical basis of sexual dimorphism in femoral neck fragility has its origins in growth and aging. J Bone Miner Res. 18:1766–1774. doi:10.1359/jbmr.2003.18.10.1766.
  • Ferdous Z, Luo Y. 2015. Study of hip fracture risk by DXA-based patient-specific finite element model. Biomed Mater Eng. 25(2):213–220. doi:10.3233/BME-151271.
  • Fleps I, Enns-Bray WS, Guy P, Ferguson SJ, Cripton PA, et al. 2018. Correction: On the internal reaction forces, energy absorption, and fracture in the hip during simulated sideways fall impact. PLoS One. 13(11):e0208286. https://doi.org/10.1371/journal.pone.0208286.
  • Ford C, Keaveny T. 1996. The dependence of shear failure properties of trabecular bone on apparent density and trabecular orientation. J Biomech. 29(29):1309–1317. doi:10.1016/0021-9290(96)00062-0.
  • Ford C, Keaveny T, Hayes C. 1996. The effect of impact direction on the structural capacity of the proximal femur during falls. J Bone Miner Res. 3:377–383.
  • Gnudi S, Ripamonti C, Gualtieri G, Malavolta N. 1999. Geometry of the proximal femur in the prediction of hip fracture in osteoporotic women. Br J Radiol. 72:729–733. doi:10.1259/bjr.72.860.10624337.
  • Hambli R. 2014. 3D Finite element simulation of human proximal femoral fracture under quasi-static load. Adv Biomech Appl. 1(1):1–14. doi:10.12989/aba.2013.1.1.001.
  • Hambli R, Allaoui S. 2013. A robust 3D finite element simulation of human proximal femur progressive fracture under stance load with experimental validation. Ann Biomed Eng. 41(12):2515–2527. doi:10.1007/s10439-013-0864-9.
  • Hambli R, Bettamer A, Allaoui S. 2012. Finite element prediction of proximal femur fracture pattern based on orthotropic behaviour law coupled to quasi-brittle damage. Med Eng Phys. 34(2):202–210. doi:10.1016/j.medengphy.2011.07.011.
  • Holzer G, von Skrbensky G, Holzer LA, Pichl W. 2009. Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength. J Bone Miner Res. 24(3):468–74. doi:10.1359/jbmr.081108. PMID: 19016592.
  • Hui SL, Slemenda CW, Johnston CC. 1989. Baseline measurement of bone mass predicts fracture in white women. Ann Intern Med. 111(5):355–61. doi:10.7326/0003-4819-111-5-355. PMID: 2764403.
  • Ito M, Wakao N, Hida T, Matsui Y, Abe Y, Aoyagi K, Uetani M, Harada A. 2010. Analysis of hip geometry by clinical CT for the assessment of hip fracture risk in elderly Japanese women. Bone. 46(2):453–457. doi:10.1016/j.bone.2009.08.059.
  • Johnell O, Kanis JA, Oden A, Johansson H, De Laet C, Delmas P, Eisman JA, Fujiwara S, Kroger H, Mellstrom D, et al. 2005. Predictive value of BMD for hip and other fractures. J Bone Miner Res. 20:1185–1194. doi:10.1359/JBMR.050304.
  • Kanis, JA. 1994. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int. 4(6):368–81. doi:10.1007/BF01622200. PMID: 7696835.
  • Kaptoge S, Beck TJ, Reeve J, Stone KL, Hillier TA, Cauley JA, Cummings SR. 2008. Prediction of incident hip fracture risk by femur geometry variables measured by hip structural analysis in the study of osteoporotic fractures. J Bone Miner Res. 23(12):1892–1904. doi:10.1359/jbmr.080802.
  • Kaptoge S, Dalzell N, Jakes R, Wareham N, Khaw KT, Beck TJ, Day NE, Loveridge N, Reeve J. 2003a. Hip section modulus, a measure of bending resistance, is more strongly related to physical activity than BMD. Osteoporos Int. 14:941–949. doi:10.1007/s00198-003-1484-2.
  • Kaptoge SK, Dalzell N, Jakes RW, Wareham N, Day NE, Khaw KT, Beck TJ, Loveridge N, Reeve J. 2003b. Hip section modulus, a measure of bending resistance, is more strongly related to reported physical activity than BMD. Osteoporos Int. 14:941–949.
  • Kaptoge SK, Dalzell N, Loveridge N, Beck TJ, Khaw K-T, Reeve J. 2003c. Effects of gender, anthropometric variables and aging on the evolution of hip strength in men and women aged over 65. Bone. 32:561–570. doi:10.1016/S8756-3282(03)00055-3.
  • Keene GS, Parker MJ, Pryor GA. 1993. Mortality and morbidity after hip fractures. Br Med J. 307:1248–1250. doi:10.1136/bmj.307.6914.1248.
  • Keyak J, Falkinstein Y. 2003. Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load. Med Eng Phys. 25(25):781–787. doi:10.1016/S1350-4533(03)00081-X.
  • Keyak JH, Lee IY, Skinner HB. 1994. Correlations between orthogonal mechanical properties and density of trabecular bone: use of different densitometric measures. J Biomed Mater Res. 28:1329–1336. doi:10.1002/jbm.820281111.
  • Keyak JH, Rossi SA, Jones KA, Skinner HB. 1998. Prediction of femoral fracture load using automated finite element modeling. J Biomech. 31:125–133.
  • Khodadadeh S, Whittle MW, Bremble GR. 1986. Height of centre of body mass during osteoarthritic gait. Clin Biomech. 1:77–80. doi:10.1016/0268-0033(86)90079-3.
  • Khoo BCC, Beck TJ, Qiao QH, Parakh P, Semanick L, Prince RL, Price RI, Price RI. 2005. In vivo short-term precision of hip structure analysis variables in comparison with bone mineral density using paired dual-energy X-ray absorptiometry scans from multi-center clinical trials. Bone. 37(1):112–121. doi:10.1016/j.bone.2005.03.007.
  • Kourtis LC, Carter DR, Kesari H, Beaupre GS. 2008. A new software tool (VA-BATTS) to calculate bending, axial, torsional and transverse shear stresses within bone cross sections having inhomogeneous material properties. Comput Methods Biomech Biomed Engin. 5(11):463–476. doi:10.1080/10255840801930728.
  • Lancaster HO. 1990. Expectations of life. Berlin: Springer.
  • Libanati CR, Schulz EE, Baylink DJ. 1987. Bone loss in the proximal femur: A major determinant for hip fractures. Trans 33rd Annu Meeting Orthop Res Soc. 12:379.
  • Looker AC, Beck TJ, Orwoll ES. 2001. Does body size account for gender differences in femur bone density and geometry? J Bone Miner Res. 16:1291–1299.
  • Lotz J, Cheal E, Hayes W. 1991a. Fracture prediction for the proximal femur using finite element models: part I––linear analysis. J Biomech Eng. 60:113–353.
  • Lotz J, Cheal E, Hayes W. 1991b. Fracture prediction for the proximal femur using finite element models: part II–nonlinear analysis. J Biomech Eng. 113(4):361–365. doi:10.1115/1.2895413.
  • Lotz JC, Cheal EJ, Hayes WC. 1991. Fracture prediction for the proximal femur using finite element models: part I - linear analysis. J Biomech Eng. 113:353–360. doi:10.1115/1.2895412.
  • Lotz JC, Cheal EJ, Hayes WC. 1995. Stress distributions within the proximal femur during gait and falls: implications for osteoporotic fracture. Osteoporos Int. 5:252–261.11. Lovejoy CO 1988 Evolution of human walking. Sci Am 259:118–125. doi:10.1007/BF01774015.
  • Luo Y. 2019. Empirical functions for conversion of femur areal and volumetric bone mineral density. J Med Biol Eng. 39:287–293. doi:10.1007/s40846-018-0394-x.
  • Luo Y, Nasiri Sarvi M, Sun P, Leslie WD, Ouyang J. 2014. Prediction of impact force in sideways fall by image-based subject-specific dynamics model. Int Biomech. 1(1):1–14.
  • Marshal D, Schnell O, Wedel H. 1996. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 312:1254–1259. doi:10.1136/bmj.312.7041.1254.
  • Melton LJ III. 1993. Hip fractures: a worldwide problem today and tomorrow. Bone. 14(Suppl 1):S1–S8. doi:10.1016/8756-3282(93)90341-7.
  • Melton LJ III, Beck TJ, Amin S, Khosla S, Achenbach SJ, Oberg AL, Riggs BL. 2005. Contributions of bone density and structure to fracture risk assessment in men and women. Osteoporos Int. 16:460–467. doi:10.1007/s00198-004-1820-1.
  • Melton LJ III, Wahner HW, Richelson LA, O’Fallon WM, Riggs B. 1968. Osteoporosis and the risk of hip fracture. Am J Epidemiol. 124:254–261. doi:10.1093/oxfordjournals.aje.a114383.
  • Morgan EF, Bayraktar HH, Keaveny TM. 2003. Trabecular bone modulus–density relationships depend on anatomic site. J Biomech. 36:897–904. doi:10.1016/S0021-9290(03)00071-X.
  • Morgan EF, Keaveny TM. 2001. Dependence of yield strain of human trabecular bone on anatomic site. J Biomech. 34:569–577. doi:10.1016/S0021-9290(01)00011-2.
  • Mourtada FA, Beck TJ, Hauser DL, Ruff CB, Bao G. 1996. Curved beam model of the proximal femur for estimating stress using dual-energy x-ray absorptiometry derived structural geometry. J Orthop Res. 14:483–492.
  • Nakamura T, Turner CH, Yoshikawa T, Slemenda CW, Peacock M, Burr DB, Mizuno Y, Orimo H, Ouchi Y, Johnston CC Jr. 1994. Do variations in hip geometry explain differences in hip fracture risk between Japanese and white Americans? J Bone Miner Res. 9(7):1071–6. doi:10.1002/jbmr.5650090715. PMID: 7942154.
  • Nasiri MN, Luo L. 2015. A two-level subject-specific biomechanical model for improving prediction of hip fracture risk. Clin Biomech. 30:881–887. doi:10.1016/j.clinbiomech.2015.05.013.
  • Nelson DA, Barondess DA, Hendrix SL, Beck TJ. 2000. Cross sectional geometry, bone strength and bone mass in the proximal femur in black and white postmenopausal women. J Bone Miner Res. 15:1992–1997. doi:10.1359/jbmr.2000.15.10.1992.
  • Norimatsu H, Mori S, Uesato T, Yoshikawa T, Katsuyama N. 1989. Bone mineral density of the spine and proximal femur in normal and osteoporotic subjects in Japan. Bone Miner. 5:213–222. doi:10.1016/0169-6009(89)90098-6.
  • Ota T, Yamamoto I, Morita R. 1999. Fracture simulation of femoral bone using finite-element method: how a fracture initiates and proceeds. Bone Miner Metab. 17(175):108–112. doi:10.1007/s007740050072.
  • Parkkari J, Kannus P, Palvanen M, Natri A, Vainio J, Aho H, Vuori I, Järvinen M. 1999. Majority of hip fractures occur as a result of a fall and impact on the greater trochanter of the femur: a prospective controlled hip fracture study with 206 consecutive patients. Calcif Tissue Int. 65:183–187. doi:10.1007/s002239900679.
  • Pietruszczak S, Inglis D, Pande G. 1999. A Fabric-dependent fracture criterion for bone. J Biomech. 32(32):1071–1079. doi:10.1016/S0021-9290(99)00096-2.
  • Pulkkinen P, Partanen J, Jalovaara P, Jamsa T. 2004. Combination of bone mineral density and upper femur geometry improves the prediction of hip fracture. Osteoporos Int. 15:274–280. doi:10.1007/s00198-003-1556-3.
  • Riggs BL, Wahner HW, Seeman KP, Offord KP, Dunn WL, Mazess RB, Johnson KA, Melton LJ III. 1982. Changes in bone mineral density of the proximal femur and spine with aging. J Clin Invest. 70:176–723. doi:10.1172/JCI110667.
  • Rivadeneira F, Zillikens MC, De Laet CE, Hofman A, Uitterlinden AG, Beck TJ, Pols HA. 2007. Femoral neck BMD is a strong predictor of hip fracture susceptibility in elderly men and women because it detects cortical bone instability: the rotterdam study. J Bone Miner Res. 22:1781–1790. doi:10.1359/jbmr.070712.
  • Schileo E, Taddei F, Cristofolini L, Viceonti M. 2008. Subject- specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture in human femurs tested in vitro. J Biomech. 41(41):356–367. doi:10.1016/j.jbiomech.2007.09.009.
  • Schutte HE. 1995. Social and economic impact of osteoporosis. A review of the literature. Eur J Radiol. 20:165–169. doi:10.1016/0720-048X(95)00628-4.
  • Snyder WS, Cook MJ, Nasset ES, Karhausen LR, Howells GP, Tipton TH. 1975. INTERNATIONAL COMMISSION ON RADIOLOGICAL PROTECTION: Report of the Task Group on Reference Man, ICRP Publication 23. Oxford:Pergammon Press; p. 68–70.
  • Stevens J, Mack KA, Paulozzi LJ, Ballesteros MF. 2008. Self-reported falls and fall-related injuries among persons aged 65 years_ United States, 2006. J Safety Res. 39:345–349. doi:10.1016/j.jsr.2008.05.002.
  • Szulc P, Duboeuf F, Schott AM, Dargent-Molina P, Meunier PJ, Delmas PD. 2006. Structural determinants of hip fracture in elderly women: re-analysis of the data from the EPIDOS study. Osteoporos Int. 17:231–236. doi:10.1007/s00198-005-1980-7.
  • Taddei F, Cristofolini L, Martelli S, Gill HS, Viceconti M. 2006. Subject-specific finite element models of long bones: an in vitro evaluation of the overall accuracy. J Biomech. 39(39):2457–2467. doi:10.1016/j.jbiomech.2005.07.018.
  • Testi D, Viceconti M, Cappello A, Gnudi S. 2002. Prediction of hip fracture can be significantly improved by a single biomedical indicator. Ann Biomed Eng. 30:801–807. doi:10.1114/1.1495866.
  • Wainwright SA, Marshall LM, Ensrud KE, Cauley JA, Black DM, Hillier TA, Hochberg MC, Vogt MT, Orwoll ES. 2005. Hip fracture in women without osteoporosis. J Clin Endocrinol Metab. 90:2787–2793. doi:10.1210/jc.2004-1568.
  • Weaver PM, Ashby MF. 1996. The optimal selection of material and section shape. J Eng Des. 7(129–1):50. doi:10.1080/09544829608907932.
  • Weaver PM, Ashby MF. 1998. Material limits for shape efficiency. Prog Mater Sci. 41:61–128. doi:10.1016/S0079-6425(97)10034-2.
  • Wiktorowicz ME, Goeree R. 2001. Economic implications of hip fracture: health service use, institutional care and cost in Canada. Osteoporosis Int. 12:271–278. doi:10.1007/s001980170116.
  • Yoshikawa T, Turner CH, Peacock M, Slemenda CW, Weaver CM, Teegarden D, Markwardt P, Burr DB. 1994. Geometric structure of the femoral neck measured using dual-energy X-ray absorptiometry. J Bone Miner Res. 9(7):1053–1064. doi:10.1002/jbmr.5650090713. Erratum in: J Bone Miner Res 1995 Mar;10(3):510. PMID:7942152.
  • Zebaze RMD, Jones A, Welsh F, Knackstedt M, Seeman E. 2005. Femoral neck shape and the spatial distribution of its mineral mass varies with its size: clinical and biomechanical implications. Bone. 37:243–252. doi:10.1016/j.bone.2005.03.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.