414
Views
5
CrossRef citations to date
0
Altmetric
Research Article

SARTRES: a semi-autonomous robot teleoperation environment for surgery

ORCID Icon, , , , , , , , , ORCID Icon & show all
Pages 376-383 | Received 10 Sep 2020, Accepted 07 Oct 2020, Published online: 05 Nov 2020

References

  • Abdulla W 2017. Mask r-cnn for object detection and instance segmentation on keras and tensorflow. Accessed August 26, 2020. https://github.com/matterport/Mask_RCNN
  • Adamides G, Christou G, Katsanos C, Xenos M, Hadzilacos T 2014. Usability guidelines for the design of robot teleoperation: A taxonomy. IEEE Trans Human-Mach Syst 45(2):256–262. 10.1109/THMS.2014.2371048
  • Ahmidi N, Tao L, Sefati S, Gao Y, Lea C, Haro BB, Zappella L, Khudanpur S, Vidal R, Hager GD 2017. A dataset and benchmarks for segmentation and recognition of gestures in robotic surgery. IEEE Trans Biomed Eng 64(9):2025–2041. 10.1109/TBME.2016.2647680
  • Barber K, Martin C 1999. Agent autonomy: specification, measurement, and dynamic adjustment. In: Proceedings of the autonomy control software workshop at autonomous agents 1999, pp. 8–15. Seattle, WA, USA: Citeseer.
  • Bewley A, Ge Z, Ott L, Ramos F, Upcroft B 2016. Simple online and realtime tracking. In: 2016 IEEE International Conference on Image Processing (ICIP). Phoenix, AZ, USA. pp. 3464–3468.
  • Cover TM, Thomas JA 2012. Elements of information theory. Hoboken, New Jersey, USA: John Wiley & Sons.
  • De Barros PG, Linderman RW 2009. A survey of user interfaces for robot teleoperation.
  • DiPietro R, Lea C, Malpani A, Ahmidi N, Vedula SS, Lee GI, Lee MR, Hager GD 2016. Recognizing surgical activities with recurrent neural networks. In: Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells W, editors. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. Athens, Greece: Springer International Publishing. pp. 551–558. Lecture Notes in Computer Science.
  • Douissard J, Hagen ME, Morel P 2019. The da vinci surgical system. Cham: Springer International Publishing. p. 13–27. 10.1007/978-3-030-17223-7_3
  • Fard MJ, Ameri S, Darin Ellis R, Chinnam RB, Pandya AK, Klein MD 2018. Automated robot-assisted surgical skill evaluation: predictive analytics approach. Int J Med Rob Comput Assisted Surg 14(1):e1850. 10.1002/rcs.1850
  • Ferland F, Pomerleau F, Le Dinh CT, Michaud F 2009. Egocentric and exocentric teleoperation interface using real-time, 3d video projection. In: Proceedings of the 4th ACM/IEEE International Conference on Human Robot Interaction HRI ‘09; New York, NY, USA. ACM. p. 37–44. doi:10.1145/1514095.1514105
  • Frank LH, Casali JG, Wierwille WW 1988. Effects of visual display and motion system delays on operator performance and uneasiness in a driving simulator. Hum Factors 30(2):201–217. doi:10.1177/001872088803000207
  • Garcia P, Rosen J, Kapoor C, Noakes M, Elbert G, Treat M, Ganous T, Hanson M, Manak J, Hasser C, et al.et al. 2009. Trauma pod: a semi-automated telerobotic surgical system. Int J Med Rob Comput Assisted Surg 5(2):136–146. doi:10.1002/rcs.238
  • Guthart GS, Salisbury JK 2000. The intuitive/sup tm/telesurgery system: overview and application. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065); vol. 1. San Francisco, CA, USA: IEEE. p. 618–621.
  • Haidegger T, Sándor J, Benyó Z 2011. Surgery in space: the future of robotic telesurgery. Surg Endosc 25(3):681–690. doi:10.1007/s00464-010-1243-3
  • He K, Gkioxari G, Dollár P, Girshick R 2017. Mask r-cnn. In: Proceedings of the IEEE international conference on computer vision. Venice, Italy. p. 2961–2969.
  • He K, Zhang X, Ren S, Sun J 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. Caesars Palace, Las Vegas, NV, USA. p. 770–778.
  • Hu D, Gong Y, Hannaford B, Seibel EJ 2015. Semi-autonomous simulated brain tumor ablation with ravenii surgical robot using behavior tree. In: 2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle, Washington, USA: IEEE. p. 3868–3875.
  • Hu D, Gong Y, Seibel EJ, Sekhar LN, Hannaford B 2018. Semi-autonomous image-guided brain tumour resection using an integrated robotic system: A bench-top study. Int J Med Rob Comput Assisted Surg 14(1):e1872.
  • Kay JS, Thorpe CE 1995. Operator interface design issues in a low-bandwidth and high-latency vehicle teleoperation system. SAE Trans:487–493. doi: 10.4271/951485
  • Kehoe B, Kahn G, Mahler J, Kim J, Lee A, Lee A, Nakagawa K, Patil S, Boyd WD, Abbeel P, et al.et al. 2014. Autonomous multilateral debridement with the Raven surgical robot. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), May. Hong Kong, China. p. 1432–1439.
  • Kofman J, Wu X, Luu TJ, Verma S 2005. Teleoperation of a robot manipulator using a vision-based human-robot interface. IEEE Trans Ind Electron 52(5):1206–1219. 10.1109/TIE.2005.855696
  • Larsson NJ 1996. Extended application of suffix trees to data compression. In: Proceedings of Data Compression Conference-DCC’96. Snowbird, UT, USA: IEEE. p. 190–199.
  • Lichiardopol S 2007. A survey on teleoperation. Technische Universitat Eindhoven, DCT report.
  • Lin HC, Shafran I, Yuh D, Hager GD 2006a Towards automatic skill evaluation: detection and segmentation of robot-assisted surgical motions. Comput Aided Surg. 11(5):220–230. 10.3109/10929080600989189
  • Lin HC, Shafran I, Yuh D, Hager GD 2006b Towards automatic skill evaluation: detection and segmentation of robot-assisted surgical motions. Comput Aided Surg. 11(5):220–230. [accessed 2019-02-24TZ]. doi:10.3109/10929080600989189.
  • Loyall J, Gillen M, Cleveland J, Usbeck K, Sterling J, Newkirk R, Kohler R 2012. Information ubiquity in austere locations. Procedia Comput Sci 10:170–178.
  • Madapana N, Rahman MM, Sanchez-Tamayo N, Balakuntala MV, Gonzalez G, Bindu JP, Venkatesh LNV, Zhang X, Noguera JB, Low T, et al.et al. 2019. Desk: A robotic activity dataset for dexterous surgical skills transfer to medical robots. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS–2019). Macau, China.
  • Newman JG, Kuppersmith RB, O’Malley JB 2011. Robotics and telesurgery in otolaryngology. Otolaryngol Clin North Am 44(6):1317–1331. 10.1016/j.otc.2011.08.008
  • Opfermann JD, Leonard S, Decker RS, Uebele NA, Bayne CE, Joshi AS, Krieger A 2017. Semi-autonomous electrosurgery for tumor resection using a multi-degree of freedom electrosurgical tool and visual servoing. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver, Canada: IEEE. p. 3653–3660.
  • Pedram SA, Ferguson P, Ma J, Dutson E, Rosen J 2017. Autonomous suturing via surgical robot: an algorithm for optimal selection of needle diameter, shape, and path. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). Marina Bay Sands Singapore, Singapore: IEEE. p. 2391–2398.
  • Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, et al.et al. 2011. Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830.
  • Rahman MM, Sanchez-Tamayo N, Gonzalez G, Agarwal M, Aggarwal V, Voyles RM, Xue Y, Wachs J 2019. Transferring dexterous surgical skill knowledge between robots for semi-autonomous teleoperation. In: 28th IEEE International Conference on Robot and Human Interactive Communication (Ro-Man–2019). New Delhi, India.
  • Redmon J, Farhadi A 2018. Yolov3: an incremental improvement. arXiv.
  • Reiley CE, Hager GD 2009. Task versus subtask surgical skill evaluation of robotic minimally invasive surgery. In: Yang GZ, Hawkes D, Rueckert D, Noble A, Taylor C, editors. Medical image computing and computer-assisted intervention – MICCAI 2009. Springer Berlin Heidelberg. p. 435–442. Lecture Notes in Computer Science. doi:10.1007/978-3-642-04268-3_54
  • Ritter EM, Scott DJ 2007. Design of a proficiency-based skills training curriculum for the fundamentals of laparoscopic surgery. Surg Innov 14(2):107–112. 10.1177/1553350607302329
  • Rosen J, Hannaford B, Satava RM 2011. Surgical robotics: systems applications and visions. Springer Science & Business Media.
  • Sen S, Garg A, Gealy DV, McKinley S, Jen Y, Goldberg K 2016. Automating multi-throw multilateral surgical suturing with a mechanical needle guide and sequential convex optimization. In: 2016 IEEE International Conference on Robotics and Automation (ICRA). Stockholm, Sweden: IEEE. p. 4178–4185.
  • Taylor R, Jensen P, Whitcomb L, Barnes A, Kumar R, Stoianovici D, Gupta P, Wang Z, Dejuan E, Kavoussi L 1999. A steady-hand robotic system for microsurgical augmentation. Int J Rob Res 18(12):1201–1210. 10.1177/02783649922067807
  • Yip M, Das N 2017. Robot autonomy for surgery. arXiv Preprint arXiv:170703080:1.
  • You B, Li J, Ding L, Xu J, Li W, Li K, Gao H 2018. Semi-autonomous bilateral teleoperation of hexapod robot based on haptic force feedback. J Intell Rob Syst 91(3):583–602. doi:10.1007/s10846-017-0738-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.