444
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Towards assisted electrocardiogram interpretation using an AI-enabled Augmented Reality headset

, , , ORCID Icon & ORCID Icon
Pages 349-356 | Received 11 Sep 2020, Accepted 07 Oct 2020, Published online: 27 Oct 2020

References

  • Bottou L 2010. Large-scale machine learning with stochastic gradient descent. In: Proceedings of the 19th International Conference on Computational Statistics (COMPSTAT’2010). Springer; p. 177–186.
  • Bradski G. 2000. The OpenCV library. Dr Dobb’s J Software Tools. 25:120–125.
  • Faes L, Liu X, Kale A, Bruynseels A, Shamdas M, Moraes G, Fu DJ, Wagner SK, Kern C, Ledsam JR, et al. 2019. Deep learning under scrutiny: performance against health care professionals in detecting diseases from medical imaging-systematic review and meta-analysis. Lancet Digital Health. 1:E271–E297. doi:10.1016/S2589-7500(19)30123-2.
  • Faust O, Hagiwara Y, Hong TJ, Lih OS, Acharya UR. 2018. Deep learning for healthcare applications based on physiological signals: A review. Comput Methods Programs Biomed. 161:1–13. doi:10.1016/j.cmpb.2018.04.005.
  • Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE. 2000. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 101(23):e215–e220. doi:10.1161/01.CIR.101.23.e215.
  • Hannun AY, Rajpurkar P, Haghpanahi M, Tison GH, Bourn C, Turakhia MP, Ng AY. 2019. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med. 25(1):65–69. doi:10.1038/s41591-018-0268-3.
  • Hou B, Yang J, Wang P, Yan R. 2019. LSTM-based auto-encoder model for ECG arrhythmias classification. IEEE Trans Instrum Meas. 69(4):1232–1240. doi:10.1109/TIM.2019.2910342.
  • Ioffe S, Szegedy C. 2015. Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv Preprint. arXiv:150203167.
  • Jane R, Laguna P, Thakor NV, Caminal P. 1992. “Adaptive baseline wander removal in the ECG: Comparative analysis with cubic spline technique,” Proceedings Computers in Cardiology, Durham, NC, USA, 1992, pp. 143–146, doi: 10.1109/CIC.1992.269426.
  • Jang J, Tschabrunn CM, Barkagan M, Anter E, Menze B, Nezafat R. date unknown. Three-dimensional holographic visualization of high-resolution myocardial scar on HoloLens. PLOS ONE 13(10): e0205188.
  • Jimenez-Perez G, Alcaine A, Camara O. 2020. Ecg-delnet: delineation of ambulatory electrocardiograms with mixed quality labeling using neural networks. arXiv Preprint. arXiv:200505236.
  • Lamounier E, Bucioli A, Cardoso A, Andrade A, Soares A. 2010. On the use of Augmented Reality techniques in learning and interpretation of cardiologic data. 2010 Ann Int Conf IEEE Eng Med Biol Soc. EMBC’10:610–613.
  • LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature. 521(7553):436–444. doi:10.1038/nature14539.
  • Liu F, Liu C, Zhao L, Zhang X, Wu X, Xu X, Liu Y, Ma C, Wei S, He Z, et al. 2018. An open access database for evaluating the algorithms of electrocardiogram rhythm and morphology abnormality detection. J Med Imaging Health Informat. 8(7):1368–1373. doi:10.1166/jmihi.2018.2442
  • López Farré A, Macaya Miguel C. 2009. Libro de la salud Cardiovascular del Hospital Clínico San Carlos y la Fundación BBVA. Fundación BBVA. ISBN: 978-84-96515-92-5
  • Lyon A, Mincholé A, Martnez JP, Laguna P, Rodriguez B. 2018. Computational techniques for ecg analysis and interpretation in light of their contribution to medical advances. J Royal Soc Interf. 15(138):20170821. doi:10.1098/rsif.2017.0821.
  • Martínez JP, Almeida R, Olmos S, Rocha AP, Laguna P. 2004. A wavelet-based ECG delineator: evaluation on standard databases. IEEE Trans Biomed Eng. 51(4):570–581. doi:10.1109/TBME.2003.821031.
  • Meyer C, Keiser H. 1977. Electrocardiogram baseline noise estimation and removal using cubic splines and state-space computation techniques. Comput Biomed Res. 10(5):459–470. doi:10.1016/0010-4809(77)90021-0.
  • Mincholé A, Camps J, Lyon A, Rodrguez B. 2019. Machine learning in the electrocardiogram. J Electrocardiol. 57:S61–S64. doi:10.1016/j.jelectrocard.2019.08.008.
  • Okamoto T, Onda S, Yanaga K, Suzuki N, Hattori A. 2015. Clinical application of navigation surgery using augmented reality in the abdominal field. Surg Today. 45(4):397–406. doi:10.1007/s00595-014-0946-9.
  • Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, et al. 2019. Pytorch: an imperative style, high-performance deep learning library. . Wallach et al., eds. Advances in Neural Information Processing Systems 32. Curran Associates, Inc., pp. 8024–8035. http://citebay.com/how-to-cite/pytorch/
  • Perez Alday EA, Shah A, Liu C, Sharma A, Seyedi S, Bahrami Rad A, Reyna M, Clifford G 2020. Classification of 12-lead ECGs: the PhysioNet - computing in cardiology challenge 2020 v1.0.1. PhysioNet. Report No:.
  • Prabhakararao E, Dandapat S. 2020. Myocardial infarction severity stages classification from ecg signals using attentional recurrent neural network. IEEE Sens J. 20(15):8711–8720. doi:10.1109/JSEN.2020.2984493.
  • Rajaganeshan R, Ludlam C, Francis D, Parasramka S, Sutton R. 2008. Accuracy in ECG lead placement among technicians, nurses, general physicians and cardiologists. Int J Clin Pract. 62(1):65–70. doi:10.1111/j.1742-1241.2007.01390.x.
  • Sassi R, Bond RR, Cairns A, Finlay DD, Guldenring D, Libretti G, Isola L, Vaglio M, Poeta R, Campana M, et al. 2017. Pdf–ecg in clinical practice: A model for long–term preservation of digital 12–lead ecg data. J Electrocardiol. 50(6):776–780.
  • Strodthoff N, Wagner P, Schaeffter T, Samek W. 2020. Deep Learning for ECG Analysis: benchmarks and Insights from PTB-XL. arXiv Preprint. arXiv:200413701.
  • Tompson J, Goroshin R, Jain A, LeCun Y, Bregler C 2015. “Efficient object localization using Convolutional Networks,” 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA. 2015, pp. 648–656, doi:10.1109/CVPR.2015.7298664.
  • Treivase S, Gomez A, Matthew J, Skelton E, Schnabel J, Toussaint N. 2020. Screen tracking for clinical translation of live ultrasound image analysis methods. arXiv Preprint. arXiv:200706272.
  • Yang W, Huang H, Zhang Z, Chen X, Huang K, Zhang S 2019. Towards Rich Feature Discovery With Class Activation Maps Augmentation for Person Re-Identification, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019, pp. 1389–1398, doi:10.1109/CVPR.2019.00148.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.