275
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Evaluating surface visualization methods in semi-transparent volume rendering in virtual reality

, ORCID Icon, , & ORCID Icon
Pages 339-348 | Received 11 Sep 2020, Accepted 07 Oct 2020, Published online: 15 Apr 2021

References

  • Baer A, Gasteiger R, Cunningham D, Preim B. 2011. Perceptual evaluation of ghosted view techniques for the exploration of vascular structures and embedded flow. Comput Graph Forum. 30(3):811–820. doi:10.1111/j.1467-8659.2011.01930.x.
  • Bavoil L, Myers K. 2008. Order independent transparency with dual depth peeling. NVIDIA OpenGL SDK. [accessed 2019 Nov 13]. http://developer.download.nvidia.com/SDK/10/opengl/src/dual depth peeling/doc/DualDepthPeeling.pdf.
  • Brecheisen R, Bartroli AVI, Platel B, Ter Haar RB 2008. Flexible GPU-based multi- volume ray-casting. 13th International Fall Workshop Vision, Modeling, and Visualization 2008, VMV 2008; Konstanz, Germany. p. 303–312.
  • Buchacher A, Erdt M. 2017. Single-pass stereoscopic GPU ray casting using re-projection layers. EGSR ’17 Proceedings of the Eurographics Symposium on Rendering: Experimental Ideas & Implementations; Helsinki, Finland. p. 11–18.
  • Carnecky R, Fuchs R, Mehl S, Jang Y, Peikert R. 2013. Smart transparency for illustrative visualization of complex flow surfaces. IEEE Trans Vis Comput Graph. 19(5):838–851. http://ieeexplore.ieee.org/document/6244795/
  • Chu Y, Li X, Yang X, Ai D, Huang Y, Song H, Jiang Y, Wang Y, Chen X, Yang J. 2018. Perception enhancement using importance-driven hybrid rendering for augmented reality based endoscopic surgical navigation. Biomed Opt Express. 9(11):5205. doi:10.1364/BOE.9.005205.
  • Diffuse. 2019. Specto – medical Visualisation; [accessed 2019 Nov 13]. https://www.diffuse.ch/.
  • Draelos M, Keller B, Viehland C, Carrasco-Zevallos OM, Kuo A, Izatt J. 2018. Real-time visualization and interaction with static and live optical coherence tomography volumes in immersive virtual reality. Biomed Opt Express. 9(6):2825.
  • Englund R, Ropinski T. 2018. Quantitative and qualitative analysis of the perception of semi- transparent structures in direct volume rendering. Comput Graph Forum. 37(6):174–187.
  • Everitt C 2001. Interactive order-independent transparency; [accessed 2019 Nov 13]. https://www.gamedevs.org/uploads/interactive-order-independent-transparency.pdf.
  • Faludi B, Zoller EI, Gerig N, Zam A, Rauter G, Cattin PC 2019. Direct visual and haptic volume rendering of medical data sets for an immersive exploration in virtual reality. In: Shen D, Liu T, Peters TM, Staib LH, Essert C, Zhou S, Yap PT, Khan A, editor. Medical image computing and computer assisted intervention – MICCAI 2019. Cham: Springer International Publishing; p. 29–37.
  • Fillion-Robin JC, Vimort JB, Pinter C, Lasso A, Rankin A 2019. slicervirtualreality: a slicer extension that enables user to interact with a slicer scene using virtual reality; [accessed 2019 Nov 13]. https://github.com/kitwaremedical/slicervirtualreality.
  • Hadwiger M, Ljung P, Salama CR, Ropinski T 2008. Advanced illumination techniques for GPU volume raycasting. ACM SIGGRAPH ASIA 2008 Courses; Singapore, Singapore. p. 1–166. http://portal.acm.org/citation.cfm?doid=1508044.1508045.
  • Harris JM. 2014. Volume perception: disparity extraction and depth representation in complex three-dimensional environments. J Vis. 14(12):11. http://www.journalofvision.org/content/14/12/11.
  • Heo R, Kalra D, Giambrone A, Gomez MJ, Leipsic J, Wong SC, Salemi A, Minutello R, Bergman GW, Lin F, et al. 2014. Interobserver and intraobserver reproducibility of aortic valvar complex measurements and transcatheter aortic valve replacement deployment angles by multidetector computed tomography. J Am Coll Cardiol. 63(12 Supplement):A1216.
  • Hitschrich N, Narang A, Schummers G, Addetia K, Hitschrich D, Mor-Avi V, Mumm B, Lang RM 2019. Planning structural heart interventions: comparison of measurements made on volume rendered 3D virtual reality models versus conventional 3D software, P2-069. In: 2019 ASE 30th Annual Scientific Sessions, Portland, USA. Journal of the American Society of Echocardiography; Elsevier. p. B110. B1–B137.
  • Jönsson D, Kronander J, Ropinski T, Ynnerman A. 2012. Historygrams: enabling interactive global illumination in direct volume rendering using photon mapping. IEEE Trans Vis Comput Graph. 18(12):2364–2371. https://www.ncbi.nlm.nih.gov/pubmed/26357144
  • Jönsson D, Sundén E, Ynnerman A, Ropinski T. 2014. A survey of volumetric illumination techniques for interactive volume rendering. Comput Graph Forum. 33(1):27–51. doi:10.1111/cgf.12252.
  • Knobloch G, Sweetman S, Bartels C, Raval A, Gimelli G, Jacobson K, Lozonschi L, Kohmoto T, Osaki S, François C, et al. 2018. Inter- and intra-observer repeatability of aortic annulus measurements on screening CT for transcatheter aortic valve replacement (TAVR): implications for appropriate device sizing. Eur J Radiol. 105::209–215. doi:10.1016/j.ejrad.2018.06.003.
  • Kratz A, Hadwiger M, Fuhrmann A, Splechtna R, Bühler K. 2006. GPU-based high-quality volume rendering for virtual environments. International Workshop Augmented Environ Medi Imaging Comput Aided Surg. p. 33–38.
  • Krüger J, Westermann R. 2004. Acceleration techniques for GPU-based volume rendering. Proc 14th IEEE Visual 2003 (VIS’03). 287–292.
  • Lasso A, Nam HH, Dinh PV, Pinter C, Fillion-Robin JC, Pieper S, Jhaveri S, Vimort JB, Martin K, Asselin M, et al. 2018. Interaction with volume-rendered three-dimensional echocardiographic images in virtual reality. J Am Soc Echocardiography. 31(10):1158–1160. doi:10.1016/j.echo.2018.06.011.
  • Li A, Zaidi Q. 2000. Perception of three-dimensional shape from texture is based on patterns of oriented energy. Vision Res. 40(2):217–242. doi:10.1016/S0042-6989(99)00169-8.
  • Magnus JG, Bruckner S. 2018. Interactive dynamic volume illumination with refraction and caustics. IEEE Trans Vis Comput Graph. 24(1):984–993. doi:10.1109/TVCG.2017.2744438.
  • Marreiros FM, Smedby Ö 2013. Stereoscopic static depth perception of enclosed 3D objects. Proceedings - SAP 2013: ACM Symposium on Applied Perception; Dublin, Ireland. p. 15–22.
  • Martin-Gomez A, Eck U, Navab N 2019. Visualization techniques for precise alignment in VR: a comparative study. 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR); mar. IEEE 735–741; Osaka, Japan. https://ieeexplore.ieee.org/document/8798135/.
  • McKee SP. 1983. The spatial requirements for fine stereoacuity. Vision Res. 23(2):191–198. doi:10.1016/0042-6989(83)90142-6.
  • MHPH VB, IJsselsteijn WA, Juola JF. 2012. Effectiveness of stereoscopic displays in medicine: A review. 3D Res. 3(1):3. doi:10.1007/3DRes.01(2012)3.
  • Pandrangi VC, Gaston B, Appelbaum NP, Albuquerque FC, Levy MM, Larson RA. 2019. The application of virtual reality in patient education. Ann Vasc Surg. 59:184–189. doi:10.1016/j.avsg.2019.01.015.
  • Pfeiffer M, Kenngott H, Preukschas A, Huber M, Bettscheider L, Müller-Stich B, Speidel S. 2018. IMHOTEP: virtual reality framework for surgical applications. Int J Comput Assist Radiol Surg. 13(5):741–748. doi:10.1007/s11548-018-1730-x.
  • Reitinger B, Bornik A, Beichel R, Schmalstieg D. 2006. Liver surgery planning using virtual reality. IEEE Comput Graph Appl. 26(6):36–47. doi:10.1109/MCG.2006.131.
  • Renner RS, Velichkovsky BM, Helmert JR. 2013. The perception of egocentric distances in virtual environments - a review. ACM Comput Surv. 46(2):1–40. doi:10.1145/2543581.2543590.
  • Silverstein JC, Dech F. 2005. Precisely exploring medical models and volumes in collaborative virtual reality. Presence. 14(1):47–59. doi:10.1162/1054746053890233.
  • Sunden E, Ropinski T. 2015. Efficient volume illumination with multiple light sources through selective light updates. IEEE Pacific Visualization Symposium 2015-July. p. 231–238.
  • Tietjen C, Isenberg T, Preim B 2005. Combining silhouettes, surface, and volume rendering for surgery education and planning. EUROVIS 2005: Eurographics/IEEE VGTC Symposium on Visualization; Leeds, UK.
  • Tsirlin I, Allison RS, Wilcox LM. 2008. Stereoscopic transparency: constraints on the perception of multiple surfaces. J Vis. 8(5):1–10. doi:10.1167/8.5.5.
  • Westheimer G, Levi DM. 1987. Depth attraction and repulsion of disparate foveal stimuli. Vision Res. 27(8):1361–1368. doi:10.1016/0042-6989(87)90212-4.
  • Yang JC, Hensley J, Grün H, Thibieroz N. 2010. Real-time concurrent linked list construction on the GPU. Comput Graph Forum. 29(4):1297–1304.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.