379
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Deep hybrid architectures for diabetic retinopathy classification

&
Pages 166-184 | Received 02 Aug 2021, Accepted 29 Mar 2022, Published online: 17 Apr 2022

References

  • Abràmoff MD, Lou Y, Erginay A, Clarida W, Amelon R, Folk JC, Niemeijer M. 2016. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Investig Ophthalmol Vis Sci. 57(13):5200–5206. doi:10.1167/iovs.16-19964.
  • APTOS 2019 Blindness Detection | Kaggle. 2019. [accessed 2021 Jun 24]. https://www.kaggle.com/c/aptos2019-blindness-detection.
  • Asiri N, Hussain M, Al Adel F, Alzaidi N. 2018. Deep learning based computer-aided diagnosis systems for diabetic retinopathy: a survey. arXiv. no. (Dl).
  • Azzeh M, Nassif AB, Minku LL. 2015. An empirical evaluation of ensemble adjustment methods for analogy-based effort estimation. J Syst Softw. 103:36–52. doi:10.1016/j.jss.2015.01.028.
  • Bandyopadhyay S, Choudhury S, Latib SK, Kole DK, Giri C. 2018. Gradation of diabetic retinopathy using KNN classifier by morphological segmentation of retinal vessels. Adv Intell Syst Comput. 628:189–198. doi:10.1007/978-981-10-5272-9_18
  • Bhatkar AP and Kharat GU. 2016. Detection of diabetic retinopathy in retinal images using MLP classifier. Proc - 2015 IEEE Int Symp Nanoelectron Inf Syst iNIS 2015: 331–335. doi:10.1109/iNIS.2015.30
  • Black D. 1976. Partial justification of the Borda count. Public Choice. 28(1):1–15. doi:10.1007/BF01718454.
  • Bony S, Pichon N, Ravel C, Durix A, Balfourier F, Guillaumin JJ. 2001. The relationship between mycotoxin synthesis and isolate morphology in fungal endophytes of Lolium perenne. New Phytol. 152(1):125–137. doi:10.1046/j.0028-646X.2001.00231.x.
  • Calinski T, Corsten LCA. 1985. Clustering means in ANOVA by simultaneous testing. Biometrics. 41(1):39. doi:10.2307/2530641.
  • Dara S and Tumma P. 2018. Feature extraction by using deep learning: a survey. Proc 2nd Int Conf Electron Commun Aerosp Technol ICECA 2018, no. Iceca: 1795–1801. doi:10.1109/ICECA.2018.8474912
  • Decencière E, Zhang X, Cazuguel G, Lay B, Cochener B, Trone C, Gain P, Ordonez R, Massin P, Erginay A, et al. 2014. Feedback on a publicly distributed image database: the Messidor database. Image Anal Stereol. 33(3):231–234. doi:10.5566/ias.1155
  • Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L. 2010. ImageNet: a large-scale hierarchical image database. 248–255. May 2014. doi:10.1109/cvpr.2009.5206848
  • Diabetic Retinopathy Detection | Kaggle. [accessed 2021 Jun 24]. https://www.kaggle.com/c/diabetic-retinopathy-detection/data.
  • Diabetic Retinopathy Detection | Kaggle. [accessed 2021 Jun 24]. https://www.kaggle.com/c/diabetic-retinopathy-detection/discussion/15801.
  • Emerson P. 2013. The original Borda count and partial voting. Soc Choice Welfare. 40(2):353–358. doi:10.1007/s00355-011-0603-9
  • García-Lapresta JL, Martínez-Panero M. 2002. Borda count versus approval voting: a fuzzy approach. Public Choice. 112(1):167–184. doi:10.1023/A:1015609200117
  • García G, Gallardo J, Mauricio A, López J, Del Carpio C. 2017. Detection of diabetic retinopathy based on a convolutional neural network using retinal fundus images. Lect Notes Comput Sci. 10614 LNCS:635–642. doi:10.1007/978-3-319-68612-7_72
  • Gargeya R, Leng T. 2017. Automated identification of diabetic retinopathy using deep learning. Ophthalmology. 124(7):962–969. doi:10.1016/j.ophtha.2017.02.008
  • Gupta P, Garg S. 2020. Breast cancer prediction using varying parameters of machine learning models. Procedia Comput Sci. 171:593–601. doi:10.1016/j.procs.2020.04.064
  • He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2016-Dec:770–778. doi:10.1109/CVPR.2016.90
  • Huang G, Liu Z, Van Der Maaten L, and Weinberger KQ. 2017. Densely connected convolutional networks. Proc - 30th IEEE Conf Comput Vis Pattern Recognit, CVPR 2017. 2017-Jan:2261–2269. doi:10.1109/CVPR.2017.243
  • Idri A and Abnane I. 2017. Fuzzy analogy based effort estimation: an empirical comparative study. IEEE CIT 2017 - 17th IEEE Int Conf Comput Inf Technol, no. Ml: 114–121. doi 10.1109/CIT.2017.2
  • Idri A, Abnane I, Abran A. 2016. Missing data techniques in analogy-based software development effort estimation. J Syst Softw. 117:595–611. doi:10.1016/j.jss.2016.04.058
  • Idri A, Abnane I, Abran A. 2018. Evaluating Pred(p) and standardized accuracy criteria in software development effort estimation. J Softw Evol Process. 30(4):1–15. doi:10.1002/smr.1925
  • Idri A, Bouchra EO, Hosni M, Abnane I. 2020. Assessing the impact of parameters tuning in ensemble based breast Cancer classification. Health Technol. 10(5):1239–1255. doi:10.1007/s12553-020-00453-2
  • Idri A, Hosni M, Abran A. 2016. Improved estimation of software development effort using Classical and Fuzzy Analogy ensembles. Appl Soft Comput J. 49:990–1019. doi:10.1016/j.asoc.2016.08.012
  • Islam MM, Yang HC, Poly TN, Jian WS, (Jack) Li YC. 2020. Deep learning algorithms for detection of diabetic retinopathy in retinal fundus photographs: a systematic review and meta-analysis. Comput Methods Programs Biomed. 191:105320. doi:10.1016/j.cmpb.2020.105320
  • Jelihovschi EG, Faria JC. 2000. ScottKnott : a package for performing the Scott-Knott clustering algorithm in R. R J. 1–6.
  • Kaur H, Virmani J, Kriti,Thakur S. 2019. A genetic algorithm-based metaheuristic approach to customize a computer-aided classification system for enhanced screen film mammograms. In: Dey N, Ashour AS, Fong SJ, and Borra S, editors. U-Healthcare Monitoring Systems; Advances in Ubiquitous Sensing Applications for Healthcare. Cambridge, MA, USA: Academic Press; p. 217–259. doi:10.1016/B978-0-12-815370-3.00010-4.
  • Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. 2015. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J. 13:8–17. doi:10.1016/j.csbj.2014.11.005.
  • Lahmar C, Idri A. 2021 . On the value of deep learning for diagnosing diabetic retinopathy. Heal Technol. 1–17. 10.1007/S12553-021-00606-X
  • Li W, Liu X, Liu J, Chen P, Wan S, Cui X. 2019. On improving the accuracy with auto-encoder on conjunctivitis. Appl Soft Comput J. 81:105489. doi:10.1016/j.asoc.2019.105489
  • Litjens G, Ciompi F, Wolterink JM, de Vos BD, Leiner T, Teuwen J, Išgum I. 2019. State-of-the-art deep learning in cardiovascular image analysis. JACC Cardiovasc Imaging. 12(8):1549–1565. doi:10.1016/j.jcmg.2019.06.009
  • Mansour RF. 2018. Deep-Learning-Based automatic computer-aided diagnosis system for diabetic retinopathy. Biomed Eng Lett. 8(1):41–57. doi:10.1007/s13534-017-0047-y
  • Messidor - ADCIS. [accessed 2021 Jun 24]. https://www.adcis.net/fr/logiciels-tiers/messidor-fr/.
  • Messidor-2 - ADCIS. [accessed 2021 Jun 24]. https://www.adcis.net/fr/logiciels-tiers/messidor2-fr/.
  • MESSIDOR-2 DR Grades | Kaggle. [accessed 2021 Jun 24]. https://www.kaggle.com/google-brain/messidor2-dr-grades.
  • Mittas N, Angelis L. 2013. Ranking and clustering software cost estimation models through a multiple comparisons algorithm. IEEE Trans Softw Eng. 39(4):537–551. doi:10.1109/TSE.2012.45.
  • Mookiah MRK, Acharya UR, Chua CK, Lim CM, Ng EYK, Laude A. 2013. Computer-aided diagnosis of diabetic retinopathy: a review. Comput Biol Med. 43(12):2136–2155. doi:10.1016/j.compbiomed.2013.10.007
  • Narayanan BN, Hardie RC, De Silva MS, Kueterman NK. 2020. Hybrid machine learning architecture for automated detection and grading of retinal images for diabetic retinopathy. J Med Imaging. 7(3):1. doi:10.1117/1.jmi.7.3.034501
  • Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, Cavan D, Shaw JE, Makaroff LE. 2017. IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 128:40–50. doi:10.1016/j.diabres.2017.03.024
  • Ottoni ALC, Nepomuceno EG, de Oliveirade Oliveira MS, de Oliveirade Oliveira DCR. 2020. Tuning of reinforcement learning parameters applied to SOP using the Scott–Knott method. Soft Comput. 24(6):4441–4453. doi:10.1007/s00500-019-04206-w
  • Poolsawad N, Kambhampati C, Cleland JGF. 2014. Balancing class for performance of classification with a clinical dataset. In: Proceedings of the World Congress on Engineering. vol.1: 237–242.
  • Raju M, Pagidimarri V, Barreto R, Kadam A, Kasivajjala V, Aswath A. 2017. Development of a deep learning algorithm for automatic diagnosis of diabetic retinopathy. Stud Health Technol Inform. 245(February 2018):559–563. doi:10.3233/978-1-61499-830-3-559
  • Razzak MI, Naz S, Zaib A. 2018. Deep learning for medical image processing: overview, challenges and the future. Lect Notes Comput Vis Biomech. 26:323–350. doi:10.1007/978-3-319-65981-7_12
  • Samreen R. 2009. Diabetes mellitus. Diabetes Mellit. 4(5):367–373. http://search.ebscohost.com/login.aspx?direct=true&db=cat02024a&AN=kku.b1289339&site=eds-live&authtype=ip,uid&scope=cite.
  • Sandler M, Howard A, Zhu M, Zhmoginov A, and Chen LC. 2018. MobileNetv2: inverted residuals and linear bottlenecks. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit:4510–4520. doi:10.1109/CVPR.2018.00474
  • Sharma J, Zettler LW, Van Sambeek JW, Ellersieck MR, Starbuck CJ. 2003. Symbiotic seed germination and mycorrhizae of federally threatened Platanthera praeclara (Orchidaceae). Am Midl Nat. 149(1):104–120. doi:10.1674/0003-00312003)149[0104:SSGAMO]2.0.CO;2
  • Simonyan K and Zisserman A. 2015. Very deep convolutional networks for large-scale image recognition. In: Bengio, Y, LeCun, Y, editors. 3rd inter-national conference on learning representations (ICLR). May 7–9; San Diego, CA, USA. p. 1–14.
  • Szegedy C, Ioffe S, Vanhoucke V, Alemi A. 2017. Inception-V4, inception-resnet and the impact of residual connections on learning. In Proceedings of the AAAI Conference on Artificial Intelligence; Vol. 31. doi:10.5555/3298023.3298188
  • Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. 2016. Rethinking the inception architecture for computer vision. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2016-Dec:2818–2826. doi:10.1109/CVPR.2016.308
  • Wong KKL, Fortino G, Abbott D. 2020. Deep learning-based cardiovascular image diagnosis: a promising challenge. Futur Gener Comput Syst. 110:802–811. doi:10.1016/j.future.2019.09.047
  • Wong TY, Sabanayagam C. 2020. Strategies to tackle the global burden of diabetic retinopathy: from epidemiology to artificial intelligence. Ophthalmologica. 243(1):9–20. doi:10.1159/000502387
  • Worsley KJ. 1986. Confidence regions and tests for a change-point in a sequence of exponential family random variables. Biometrika. 73(1):91–104. doi:10.1093/biomet/73.1.91
  • Xu Y, Goodacre R. 2018. On splitting training and validation set: a comparative study of cross-validation, bootstrap and systematic sampling for estimating the generalization performance of supervised learning. J Anal Test. 2(3):249–262. doi:10.1007/s41664-018-0068-2
  • Yau JWY, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, Chen S-J, Dekker JM, Fletcher A, Grauslund J, et al. 2012. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 35(3):556–564. doi:10.2337/dc11-1909
  • Zeng X, Chen H, Luo Y, Ye W. 2019. Automated diabetic retinopathy detection based on binocular siamese-like convolutional neural network. IEEE Access. 7:30744–30753. doi:10.1109/ACCESS.2019.2903171
  • Zerouaoui H, Idri A. 2022. Deep hybrid architectures for binary classification of medical breast cancer images. Biomed Signal Process Control. 71(PB):103226. doi:10.1016/j.bspc.2021.103226
  • Zerouaoui H, Idri A, El Asnaoui K. 2018. Reviewing Machine Learning and Image Processing Based Decision-Making Systems for Breast Cancer Imaging. J. Med. Syst. 45(1). doi:10.1007/s10916-020-01689-1
  • Zhao Y, Li H, Wan S, Sekuboyina A, Hu X, Tetteh G, Piraud M, Menze B. 2019. Knowledge-aided convolutional neural network for small organ segmentation. IEEE J Biomed Heal Informatics. 23(4):1363–1373. doi:10.1109/JBHI.2019.2891526

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.