102
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Performance analysis of diabetic retinopathy using diverse image enhancement techniques

ORCID Icon &
Pages 185-196 | Received 08 May 2021, Accepted 29 Mar 2022, Published online: 19 Apr 2022

References

  • Alenezi F, Santosh KC. 2021. Geometric regularized hopfield neural network for medical image enhancement. Int J Biomed Imaging. 2021:1–12. doi:10.1155/2021/6664569.
  • Alhussein M, Aurangzeb K, Haider SI. 2020. An unsupervised retinal vessel segmentation using hessian and intensity based approach. IEEE Access. 8:165056–165070. doi:10.1109/ACCESS.2020.3022943.
  • Aljanabi MA, Hussain ZM, Lu SF. 2018. An entropy-histogram approach for image. 2018. [Online]. https://www.hindawi.com/journals/mpe/2018/9801308/.
  • Aswini S, Suresh A, Priya S, Santhosh Krishna BV. 2018. Retinal vessel segmentation using morphological top hat approach on diabetic retinopathy images. Proc 4th IEEE Int Conf Adv Electr Electron Information, Commun Bio-Informatics, AEEICB 2018. (November):1–5. doi:10.1109/AEEICB.2018.8480970.
  • Chang YT, Wang JT, Yang WH, Chen XW. 2014. Contrast enhancement in palm bone image using quad-histogram equalization. Proc - 2014 Int Symp Comput Consum Control IS3C 2014. 1091–1094. doi:10.1109/IS3C.2014.284.
  • Das R. 2017. Performance analysis of IoT Security scheme employing an integrated approach of cryptography and steganography. Cse.Wustl.Edu. 1–22. [Online]. https://www.cse.wustl.edu/~jain/cse567-17/ftp/iot_sec.pdf.
  • Erwin E, Sriwijaya U. 2020. Improving retinal image quality using the contrast stretching, histogram equalization, and CLAHE methods with median filters. Int J Image Graphics Signal Process. 12(2):30–41. doi:10.5815/ijigsp.2020.02.04.
  • Gharaibeh N, Al-Hazaimeh OM, Al-Naami B, Nahar KMO. 2018. An effective image processing method for detection of diabetic retinopathy diseases from retinal fundus images. Int J Signal Imaging Syst Eng. 11(4):206–216. doi:10.1504/IJSISE.2018.093825.
  • Golshani L, Pasha E, Yari G. 2009. Some properties of Rényi entropy and Rényi entropy rate. Inf Sci (Ny). 179(14):2426–2433. doi:10.1016/j.ins.2009.03.002.
  • Hitam MS. 2013. Mixture contrast limited adaptive histogram equalization for underwater image enhancement.
  • Kandpal A, Jain N. 2020. Retinal image enhancement using edge-based texture histogram equalization. 2020 7th Int Conf Signal Process Integr Networks, SPIN 2020. 477–482. doi:10.1109/SPIN48934.2020.9071108.
  • Kaso A. 2018. Computation of the normalized cross-correlation by fast Fourier transform. PLoS ONE. 13(9):e0203434. doi:10.1371/journal.pone.0203434.
  • Kushol R, Kabir M, Salekin S. 2017. Contrast enhancement by top-hat and bottom-hat transform with optimal structuring element: application to retinal. 533–540. doi:10.1007/978-3-319-59876-5.
  • Lehmann EL, Casella G. 1998. Theory of point estimation. 2nd ed. Vol 41. Springer.
  • Li D, Zhang L, Sun C, Yin T, Liu C, Yang J. 2019. Robust retinal image enhancement via dual-tree complex wavelet transform and morphology-based method. IEEE Access. 7:47303–47316. doi:10.1109/ACCESS.2019.2909788.
  • Luque-Chang A, Cuevas E, Pérez-Cisneros M, Fausto F, Valdivia-González A, Sarkar R. 2021. Moth Swarm algorithm for image contrast enhancement. Knowledge Based Syst. 212:106607. doi:10.1016/j.knosys.2020.106607.
  • Palanisamy G, Ponnusamy P, Gopi VP. 2019. An improved luminosity and contrast enhancement framework for feature preservation in color fundus images. Signal Image Video Process. 13(4):719–726. doi:10.1007/s11760-018-1401-y.
  • Palanisamy G, Shankar NB, Ponnusamy P, Gopi VP. 2020. A hybrid feature preservation technique based on luminosity and edge based contrast enhancement in color fundus images. Biocybern Biomed Eng. 40(2):752–763. doi:10.1016/j.bbe.2020.02.006.
  • Pizer SM, Amburn EP, Austin JD, Cromartie R, Geselowitz A, Greer T, ter Haar Romeny B, Zimmerman JB, Zuiderveld K. 1987. Adaptive histogram equalization and its variations. Comput Vision Graphics Image Process. 38(1):99. doi:10.1016/s0734-189x(87)80156-1.
  • Puniani S, Arora S. 2015. Performance evaluation of image enhancement techniques. Int J Signal Process Image Process Pattern Recognit. 8(8):251–262. doi:10.14257/ijsip.2015.8.8.27.
  • Qureshi I, Ma J, Shaheed K. 2019. A hybrid proposed fundus image enhancement framework for diabetic retinopathy. Algorithms. 12(1):1–16. doi:10.3390/a12010014.
  • Qureshi I, Ma J, Shaheed K. 2019. A hybrid proposed fundus image enhancement framework for diabetic retinopathy. Algorithms. 12(1):14.
  • Renuka Devi M, Harinipriyadharsini B. 2019. De-Noising of retinal image using crafty edge detection (CED). Int J Recent Technol Eng. 8(3):169–171. doi:10.35940/ijrte.C3919.098319.
  • Senthilkumaran N and Thimmiaraja J. 2014. Histogram equalization for image enhancement using MRI brain images. Proceeding - World Congress on Computing and Communication Technologies WCCCT 2014. p. 80–83. doi:10.1109/WCCCT.2014.45.
  • Sonali SS, Singh AK, Ghrera SP, Elhoseny M. 2019. An approach for de-noising and contrast enhancement of retinal fundus image using CLAHE. Opt Laser Technol. 110:87–98. doi:10.1016/j.optlastec.2018.06.061.
  • Suma KG, Kumar VS. 2019. A quantitative analysis of histogram equalization-based methods on fundus images for diabetic retinopathy detection K. Singapore: Springer.
  • Sun Y, Zhang D. 2019. Diagnosis and analysis of diabetic retinopathy based on electronic health records. IEEE Access. 7:86115–86120. doi:10.1109/ACCESS.2019.2918625.
  • Tavakoli M, Mehdizadeh A, Aghayan A, Shahri RP, Ellis T, Dehmeshki J. 2021. Automated microaneurysms detection in retinal images using radon transform and supervised learning: application to mass screening of diabetic retinopathy. IEEE Access. 9:67302–67314. doi:10.1109/ACCESS.2021.3074458.
  • Tavakoli M, Shahri RP, Pourreza H, Mehdizadeh A, Banaee T, Bahreini Toosi MH. 2013. A complementary method for automated detection of microaneurysms in fluorescein angiography fundus images to assess diabetic retinopathy. Pattern Recognit. 46(10):2740–2753. doi:10.1016/j.patcog.2013.03.011.
  • Thakur N, Juneja M. 2021. Pre-processing of retinal images for removal of outliers. Wirel Pers Commun. 116(1):739–765. doi:10.1007/s11277-020-07736-x.
  • Turitsyna EG, Webb S. 2005. Scope of validity of PSNR in image/video quality assessment. Electron Lett. 41(2):40–41. doi:10.1049/el.
  • Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. 2004. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 13(4):600–612. doi:10.1109/TIP.2003.819861.
  • Wang J, Li Y-J, Yang K-F. 2021. Retinal fundus image enhancement with image decomposition and visual adaptation. Comput Biol Med. 128:104116. doi:10.1016/j.compbiomed.2020.104116.
  • Williams BM, Al-Bander B, Pratt H, Lawman S, Zhao Y, Zheng Y, Shen Y. 2017. Fast blur detection and parametric deconvolution of retinal fundus images. Lect Notes Comput Sci Lect Notes Comput Sci (Including Subser Lect Notes Artif Intell Lect Notes Bioinformatics). LNCS. 10554:194–201. doi:10.1007/978-3-319-67561-9_22.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.