130
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Retinal blood vessels segmentation using Wald PDF and MSMO operator

, &
Pages 215-232 | Received 23 Jun 2021, Accepted 04 Apr 2022, Published online: 20 Apr 2022

References

  • Adapa D, Raj ANJ, Alisetti SN, Zhuang Z, Ganesan K, Naik G. 2020. Supervised blood vessel segmentation technique for digital fundus images using Zernike Moment based features. PloS One. 15(3). doi:10.1371/journal.pone.0229831.
  • Aguirre-Ramos H, Avina-Cervantes JG, Cruz-Aceves I, Ruiz-Pinales J, Ledesma S. 2018. Blood vessel segmentation in retinal fundus images using gabor filters, fractional derivatives, and expectation maximization. Appl Math Comput. 339:568–587. doi:10.1016/j.amc.2018.07.057.
  • Al-Rawi M, Qutaishat M, Arrar M. 2007. An improved matched filter for blood vessel detection of digital retinal images. Comput Biol Med. 37(2):262–267. doi:10.1016/j.compbiomed.2006.03.003.
  • Almotri J, Elleithy K, Elleithy A. 2018. Retinal vessels segmentation techniques and algorithms: a survey. Applied Sciences, MDPI. 8(155):1–31.
  • Bai X, Zhou F. 2011. Multiscale toggle contrast operator based mineral image enhancement. J Microsc. 243(2):141–153. doi:10.1111/j.1365-2818.2010.03487.x.
  • Becker C, Rigamonti R, Lepetit V, Fua P. 2013. Supervised Feature Learning for Curvilinear Structure Segmentation. In: Proceedings of MICCAI. p. 526–533.
  • Chakraborti T, Jha DK, Chowdhury AS, Jiang X. 2015. A self adaptive matched filter for retinal blood vessel detection. Mach Vis Appl. 26:55–68. doi:10.1007/s00138-014-0636-z.
  • Chalakkal RJ, Abdulla WH. 2018. Improved vessel segmentation using curvelet transform and line operators. In: Proceedings of APSIPA Annual Summit and Conference. pp. 2041–2046.
  • Chanwimaluang T, Fan G. 2003. An efficient blood vessel detection algorithm for retinal images using local entropy thresholding. In: Circuits and Systems, Proceedings, International Symposium, vol. 5. p. 21–23.
  • Chaudhuri S, Chatterjee S, Katz N, Nelson M, Goldbaum M. 1989. Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans Med Imaging. 8(3):263–269. doi:10.1109/42.34715.
  • Chen Y. 2017. A labeling-free approach to supervising deep neural networks for retinal blood vessel segmentation. arXiv:1704.07502.
  • Dash J, Bhoi N. 2017a. Detection of retinal blood vessels from ophthalmoscope images using morphological approach. Electron Lett Comput Vision Image Anal. 16:1–14. doi:10.5565/rev/elcvia.913.
  • Dash J, Bhoi N. 2017b. A thresholding based technique to extract retinal blood vessels from fundus images. Future Comput Inform J. 1–7.
  • Dash J, Parida P, Bhoi N. 2020. Retinal blood vessel extraction from fundus images using enhancement filtering and clustering. Electronic Letters on Computer Vision and Image Analysis. 19(1):38–52. doi:10.5565/rev/elcvia.1239.
  • Erwin, Damayanti HR. 2020. Supervised retinal vessel segmentation based average filter and iterative self organizing data analysis technique. Int J Comput Intell Appl. 20(1):1–13.
  • Fathi A, Naghsh-Nilchi AR. 2013. Automatic wavelet based retinal blood vessels segmentation and vessel diameter estimation. Biomed Signal Process Control. 8(1):71–80. doi:10.1016/j.bspc.2012.05.005.
  • Fraz MM, Remagnino P, Hoppe A, Uyyanonvara B, Owen CG, Rudnicka AR, Barman SA. 2011. Retinal vessel extraction using first-order derivative of gaussian and morphological processing. ISVC-2011, Part-I, LNCS 6938. p. 410–420.
  • Fraz MM, Basit A, Barman SA. 2013. Application of morphological bit planes in retinal blood vessel extraction. J Digit Imaging. 26(2):274–286. doi:10.1007/s10278-012-9513-3.
  • Fu H, Xu Y, Wong DWK, Liu J. 2016. Retinal vessel segmentation via deep learning network and fully connected conditional random fields. In: Proceedings of the IEEE 13th International Symposium on Biomedical Imaging; Prague, Czech Republic; p. 698–701.
  • Gao J, Chen G, Lin W. 2020. An effective retinal blood vessel segmentation by using automatic random walks based on centerline extraction. Biomed Res Int. 1–11.
  • GeethaRamani R, Balasubramanian L. 2015. Retinal blood vessel segmentation employing image processing and data mining techniques for computerized retinal image analysis. Bioinformatics and Biomedical Engineering. 5:1–16.
  • Gu Z, Cheng J, Fu H, Zhou K, Hao H, Zhao Y, Zhang T, Gao S, Liu J. 2019. CE-Net: context encoder network for 2D medical image segmentation. IEEE Transaction on Medical Imaging. 38(10):2281–2292. doi:10.1109/TMI.2019.2903562.
  • Hoover A, Kouznetsova V, Goldbaum M. 2000. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans Med Imaging. 19(3):203–210. doi:10.1109/42.845178.
  • Islam SM. 2019. Semantic segmentation of retinal blood vessel via multi-scale convolutional neural network. Preprint. p. 1–11.
  • Isola P, Zhu JY, Zhou T, Efros AA. 2017. Image to image translation with conditional adversarial networks. In: Proceedings of CVPR. p. 1125–1134.
  • Khan KB, Khaliq AA, Shahid M. 2016. B-COSFIRE filter and VLM based retinal blood vessels segmentation and denoising. In: International Conference on Computing, Electronics, and Electrical Engineering, IEEE. p. 132–137.
  • Khan KB, Khaliq AA, Shahid M, Khan S. 2016. An efficient technique for retinal vessel segmentation and denoising using modified ISODATA and CLAHE. IIUM Eng J. 17(2):31–46. doi:10.31436/iiumej.v17i2.611.
  • Khan KB, Khaliq AA, Shahid M. 2016. A morphological hessian based approach for retinal blood vessels segmentation and denoising using region based Otsu thresholding. PloS One. 11:9.
  • Khan KB, Khaliq AA, Shahid M. 2017. A novel fast GLM approach for retinal vascular segmentation and denoising. J Inform Sci Eng. 33(6):1611–1627.
  • Khan KB, Siddique MS, Ahmad M, Mazzara M. 2020. A hybrid unsupervised approach for retinal vessel segmentation. Biomed Res Int. 1–20.
  • Khan KB, Khaliq AA, Jalil A, Iftikhar MA, Ullah N, Aziz MW, Ullah K, Shahid M. 2019. A review of retinal blood vessels extraction techniques: challenges, taxonomy, and future trends. Pattern Analysis and Applications. 22(3):767–802. doi:10.1007/s10044-018-0754-8.
  • Khowaja SA, Khuwaja P, Ismaili IA. 2019. A framework for retinal vessel segmentation from fundus images using hybrid feature set and hierarchical classification. Signal, Image and Video Processing. 13:379–387. doi:10.1007/s11760-018-1366-x.
  • Kumar KS, Jatoth CS, Singh NP. 2021. Segmentation of retinal blood vessel using an algorithm-based gamma distribution of matched filter. In: Proceedings of Integrated Intelligence Enable Networks and Computing, Algorithms for Intelligent Systems. p. 73–81.
  • Kushol1 R, Kabir MH, Abdullah-Al-Wadud M, Islam MS. 2020. Retinal blood vessel segmentation from fundus image using an efficient multiscale directional representation technique bendlets. Math Biosci Eng. 17(6):7751–7771. doi:10.3934/mbe.2020394.
  • Lu Z, Chen D, Xue D. 2020. Weakly supervised retinal vessel segmentation algorithm without ground truth. Electron Lett. 56(23):1235–1237. doi:10.1049/el.2020.1893.
  • Ma Y, Zhu Z, Dong Z, Shen T, Sun M, Kong W. 2021. Multichannel retinal blood vessel segmentation based on the combination of matched filter and U-Net network. Biomed Res Int. 2021:1–18.
  • Maninis KK, Pont-Tuset J, Arbeláez P, Gool LV. 2016. Deep retinal image understanding. In: Proceedings of MICCAI. p. 140–148.
  • Memari N, Ramli AR, Saripan MIB, Mashohor S, Moghbel M. 2019. Retinal blood vessel segmentation by using matched filtering and fuzzy C‑means clustering with integrated level set method for diabetic retinopathy assessment. J Med Biol Eng. 38:713–731. doi:10.1007/s40846-018-0454-2.
  • Odstrcilik J, Kolar R, Budai A, Hornegger J, Jan J, Gazarek J, Kubena T, Cernosek P, Svoboda O, Angelopoulou E. 2013. Retinal vessel segmentation by improved matched filtering: evaluation on a new high resolution fundus image database. IET Image Processing. 7(4):373–383. doi:10.1049/iet-ipr.2012.0455.
  • Orlando J, Prokofyeva E, Blaschko M. 2016. A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images. In: IEEE Transaction on Biomedical Engineering. p. 1–99.
  • Pachade S, Porwal P, Kokare M, Giancardo L, Meriaudeau F. 2020. Retinal vasculature segmentation and measurement framework for Cr̥olor Fundus and SLO images. Biocybern Biomed Eng. 40(3):865–900. doi:10.1016/j.bbe.2020.03.001.
  • Ronneberger O, Fischer P, Brox T. 2015. U-Net: convolutional networks for biomedical image segmentation. In: Proceedings of MICCAI. p. 234–241.
  • Roy S, Mitra A, Roy S, Setua SK. 2019. Blood vessel segmentation of retinal image using clifford matched filter and clifford convolution. Multimed Tools Appl. 78(24):34839–34865. doi:10.1007/s11042-019-08111-0.
  • Santos JCMD, Carrijo GA, Cardoso CDFDS, Ferreira JC, Sousa PM, Patrocínio AC. 2020. Fundus image quality enhancement for blood vessel detection via a neural network using CLAHE and Wiener filter. Res Biomed Eng. 36:107–119. doi:10.1007/s42600-020-00046-y.
  • Sarki R, Ahmed K, Wang H, Zhang Y. 2020. Automatic detection of diabetic eye disease through deep learning using fundus images: a survey. IEEE Access. 8:151133–151149. doi:10.1109/ACCESS.2020.3015258.
  • Saroj SK, Kumar R, Singh NP. 2020. Fréchet PDF base matched filter approach for retinal blood vessels segmentation. Comput Methods Programs Biomed. 194:1–17. doi:10.1016/j.cmpb.2020.105490.
  • Seo J, Kim SD. 2013.Novel PCA based Color to Gray Image Conversion. In: Image Processing (ICIP), International Conference of IEEE, pp. 2279–2283.
  • Shah SAA, Shahzad A, Khan MA, Lu C, Tang TB. 2019. Unsupervised method for retinal vessel segmentation based on gabor wavelet and multiscale line detector. IEEE Access. 7:167221–167228. doi:10.1109/ACCESS.2019.2954314.
  • Shukla AK, Pandey RK, Pachori RB. 2020. A fractional filter based efficient algorithm for retinal blood vessel segmentation. Biomed Signal Process Control. 59:1–16. doi:10.1016/j.bspc.2020.101883.
  • Singh NP, Kumar R, Srivastava R. 2015. Local entropy thresholding based fast retinal vessels segmentation by modifying matched filter. In: International Conference on Computing, Communication and Automation. p. 1166–1170.
  • Singh NP, Srivastava R. 2016. Retinal blood vessels segmentation by using gumbel probability distribution function based matched filter. Comput Methods Programs Biomed. 129:40–50. doi:10.1016/j.cmpb.2016.03.001.
  • Singh NP, Srivastava R. 2017. Weibull probability distribution function based matched filter approach for retinal blood vessels segmentation. Advances in Intelligent Systems and Computing. 427–437.
  • Singh NP, Srivastava R. 2019. Extraction of retinal blood vessels by using an extended matched filter based on second derivative of Gaussian. In: Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, vol. 89, p. 269–277.
  • Soomro TA, Afifi AJ, Gao J, Hellwich O, Khan MA, Paul M, Zheng L. 2017. Boosting sensitivity of a retinal vessel segmentation algorithm with convolutional neural network. In: Proceedings, International Conference on Digital Image Computing: Techniques and Applications (DICTA), Sydney, NSW, Australia; p. 1–8.
  • Sreejini KS, Govindan VK. 2015. Improved multiscale matched filter for retina vessel segmentation using PSO algorithm. Egypt Inform J. 16(3):253–260. doi:10.1016/j.eij.2015.06.004.
  • Staal J, Abramoff MD, Niemeijer M, Viergever MA, van Ginneken B. 2004. Ridge based vessel segmentation in colour images of the Retina. IEEE Transaction on Medical Imaging. 23(4):501–509. doi:10.1109/TMI.2004.825627.
  • Szpak ZL, Tapamo JR. 2008. Automatic and interactive retinal vessel segmentation. South Afr Comput J. 1–8.
  • Thangaraj S, Periyasamy V, Balaji R. 2018. Retinal vessel segmentation using neural network. IET Image Process. 12(5):669–678. doi:10.1049/iet-ipr.2017.0284.
  • Vega R, Sanchez-Ante G, Falcon-Morales LE, Sossa H, Guevara E. 2015. Retinal vessel extraction using lattice neural networks with dendritic processing. Computer in Biology and Medicine. 58:20–30. doi:10.1016/j.compbiomed.2014.12.016.
  • Xie S, Tu Z. 2015. Holistically nested edge detection. In: Proceedings of ICCV. p. 1395–1403.
  • Yang Y, Shao F, Fu Z, Fu R. 2019. Discriminative dictionary learning for retinal vessel segmentation using fusion of multiple features. Signal Image Video Process. 13:1529–1537. doi:10.1007/s11760-019-01501-9.
  • Zardadi M, Mehrshad N, Razavi SM. 2016. Unsupervised segmentation of retinal blood vessels using the human visual system line detection model. J Inform Syst Telecommun. 4(2):125–133.
  • Zhang J, Bekkers E, Abbasi S, Dashtbozorg B, Romeny BH. 2015. Robust and fast vessel segmentation via Gaussian derivatives in orientation scores. In: International Conference on Image Analysis and Processing ICIAP 2015. p 537–547.
  • Zhou L, Yu Q, Xu X, Gu Y, Yang J. 2017. Improving dense conditional random field for retinal vessel segmentation by discriminative feature learning and thin vessel enhancement. Comput Methods Programs Biomed. 148:13–25. doi:10.1016/j.cmpb.2017.06.016.
  • Zhou C, Zhang X, Chen H. 2020. A New robust method for blood vessel segmentation in retinal fundus images based on weighted line detector and hidden Markov model. Comput Methods Programs Biomed. 187:1–12. doi:10.1016/j.cmpb.2019.105231.
  • Zolfagharnasab H, Naghsh-Nilchi AR. 2014. Cauchy based matched filter for retinal vessels detection. J Med Signals Sens. 4(1):1–26. doi:10.4103/2228-7477.128432.
  • Zuiderveld K. 1994. Contrast limited adaptive histogram equalization. In: Graphics Gems. San Diego (CA): Academic Press Professional, Inc.; pp. 474–485.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.