349
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Fast and robust femur segmentation from computed tomography images for patient-specific hip fracture risk screening

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 253-265 | Received 13 Oct 2021, Accepted 17 Apr 2022, Published online: 03 May 2022

References

  • Bjornsson PA, Helgason B, Palsson H, Sigurdsson S, Gudnason V, Ellingsen LM. 2021. Automated femur segmentation from computed tomography images using a deep neural network. In: Gimi B Krol A, editors. Medical imaging 2021: biomedical applications in molecular, structural, and functional imaging; vol. 11600. International Society for Optics and Photonics; SPIE; pp. 324–330. doi:10.1117/12.2581100.
  • Chang Y, Yuan Y, Guo C, Wang Y, Cheng Y, Tamura S. 2019. Accurate pelvis and femur segmentation in hip CT with a novel patch-based refinement. IEEE J Biomed Health Inform. 23(3):1192–1204. doi:10.1109/JBHI.2018.2834551.
  • Chen F, Liu J, Zhao Z, Zhu M, Liao H. 2019. 3D feature-enhanced network for automatic femur segmentation. IEEE J Biomed Health Inform. 23(1):243–252. doi:10.1109/JBHI.2017.2785389.
  • Chengwen C, Bai J, Wu X, Zheng G. 2015. Mascg: multi-atlas segmentation constrained graph method for accurate segmentation of hip CT images. Med Image Anal. 26(1):173–184. doi:10.1016/j.media.2015.08.011.
  • Dice LR. 1945. Measures of the amount of ecologic association between species. Ecology. 26(3):297–302. doi:10.2307/1932409.
  • Enns-Bray W, Bahaloo H, Fleps I, Ariza O, Gilchrist S, Widmer R, Guy P, Pálsson H, Ferguson S, Cripton P, et al. 2017. Material mapping strategy to improve the predicted response of the proximal femur to a sideways fall impact. J Mech Behav Biomed Mater. 78:196–205. doi:10.1016/j.jmbbm.2017.10.033.
  • Enns-Bray W, Bahaloo H, Fleps I, Pauchard Y, Taghizadeh E, Sigurdsson S, Aspelund T, Büchler P, Harris T, Gudnason V, et al. 2019. Biofidelic finite element models for accurately classifying hip fracture in a retrospective clinical study of elderly women from the AGES Reykjavik cohort. Bone. 120:25–37. doi:10.1016/j.bone.2018.09.014.
  • Fleps I, Enns-Bray W, Baker A, Bahaloo H, Sigurdsson S, Gudnason V, Ferguson S, Pálsson H, Helgason B 2021. FEM-Derived femoral strength is a better predictor of hip fracture risk than aBMD in the AGES Reykjavik study cohort. Under revision in Bone.
  • Fleps I, Guy P, Ferguson S, Cripton P, Helgason B. 2019. Explicit finite element models accurately predict subject-specific and velocity-dependent kinetics of sideways fall impact. J Bone Mineral Res. 34(10):1837–1850. doi:10.1002/jbmr.3804.
  • Fleps I, Pálsson H, Baker A, Enns-Bray W, Bahaloo H, Danner M, Singh NB, Taylor WR, Sigurdsson S, Gudnason V, et al. 2022. Finite element derived femoral strength is a better predictor of hip fracture risk than aBMD in the AGES Reykjavik study cohort. Bone. 154:116219. doi: 10.1016/j.bone.2021.116219.
  • Haleem S, Lutchman L, Mayahi R, Grice J, Parker M. 2008. Mortality following hip fracture: trends and geographical variations over the last 40 years. Injury. 39(10):1157–1163. doi:10.1016/j.injury.2008.03.022.
  • Harris T, Launer L, Eiriksdottir G, Kjartansson O, Jonsson P, Sigurdsson G, Thorgeirsson G, Aspelund T, Garcia M, Cotch MF, et al. 2007. Age, gene/environment susceptibility-Reykjavik study: multidisciplinary applied phenomics. Am J Epidemiol. 165:1076–1087. doi:10.1093/aje/kwk115.
  • Hayes W, Myers E, Robinovitch S, Kroonenberg AVD, Courtney A, McMahon T. 1996. Etiology and prevention of age-related hip fractures. Bone. 18(1):77S–86S. doi:10.1016/8756-3282(95)00383-5.
  • Huo Y, Terry J, Wang J, Nair S, Lasko T, Freedman B, Carr J, Landman B. 2019. Fully automatic liver attenuation estimation combing CNN segmentation and morphological operations. Med Phys. 46(8):3508–3519. doi:10.1002/mp.13675.
  • Ioffe S, Szegedy C. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. ArXiv. abs/1502.03167.
  • Isensee F, Jäger P, Wasserthal J, Zimmerer D, Petersen J, Kohl S, Schock J, Klein A, Roß T, Wirkert S, et al. 2020. Batchgenerators - a Python framework for data augmentation. https://github.com/MIC-DKFZ/batchgenerators.
  • Kingma D, Ba J. 2014. Adam: a method for stochastic optimization. International Conference on Learning Representations. https://arxiv.org/pdf/1412.6980.pdf.
  • LeCun Y, Boser B, Denker J, Henderson D, Howard R, Hubbard W, Jackel L. 1990. Handwritten digit recognition with a back-propagation network. Denver (CO): NIPS; pp. 396–404.
  • Milletari F, Navab N, Ahmadi SA. 2016. V-Net: Fully convolutional neural networks for volumetric medical image segmentation. 10; 565–571.
  • Müller D, Kramer F. 2019. Miscnn: a framework for medical image segmentation with convolutional neural networks and deep learning. 01. Presented at KiTS19.
  • Parkkari J, Kannus P, Palvanen M, Natri A, Vainio J, Aho H, Vuori I, Järvinen M. 1999. Majority of hip fractures occur as a result of a fall and impact on the greater trochanter of the femur: a prospective controlled hip fracture study with 206 consecutive patients. Calcif Tissue Int. 65(3):183–187. doi:10.1007/s002239900679.
  • Pauchard Y, Fitze T, Browarnik D, Eskandari A, Pauchard I, Enns-Bray W, Pálsson H, Sigurdsson S, Ferguson SJ, Harris TB, et al. 2016. Interactive graph-cut segmentation for fast creation of finite element models from clinical CT data for hip fracture prediction. Comput Methods Biomech Biomed Engin. 20(3):342.
  • Ronneberger O, Fischer P, Brox T. 2015. U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells W, Frangi A, editors. Medical image computing and computer-assisted intervention (MICCAI); (LNCS; vol. 9351). Springer; pp. 234–241. arXiv:1505.04597 [cs.CV]).
  • Schuit S, van der Klift M, Weel A, de Laet C, Burger H, Seeman E, Hofman A, Uitterlinden A, van Leeuwen J, Pols H. 2004. Fracture incidence and association with bone mineral density in elderly men and women: the rotterdam study. Bone. 34(1):195–202. doi:10.1016/j.bone.2003.10.001.
  • Shao M, Han S, Carass A, Li X, Blitz A, Shin J, Prince J, Ellingsen L. 2019. Brain ventricle parcellation using a deep neural network: application to patients with ventriculomegaly. NeuroImage. 23:101871. doi:10.1016/j.nicl.2019.101871.
  • Stone K, Seeley D, Lui L, Cauley J, Ensrud K, Browner W, Nevitt M, Cummings S. 2003. Bmd at multiple sites and risk of fracture of multiple types: long-term results from the study of osteoporotic fractures. J Bone Miner Res. 18(11):1947–1954. doi:10.1359/jbmr.2003.18.11.1947.
  • UN. 2015. World population ageing 2015. UN: Department of Economic and Social Affairs, Population Division. (ST/ESA/SER.A/368).
  • Wainwright S, Marshall L, Ensrud K, Cauley J, Black D, Hillier T, Hochberg M, Vogt M, Orwoll E, of Osteoporotic Fractures Research Group S. 2005. Hip fracture in women without osteoporosis. J Clin Endocrinol Metab. 90(5):2787–2793. doi:10.1210/jc.2004-1568.
  • Wang H, Yushkevich PA. 2013. Multi-Atlas segmentation without registration: a supervoxel-based approach. In: Mori K, Sakuma I, Sato Y, Barillot C Navab N, editors. Medical image computing and computer-assisted intervention – MICCAI 2013. Berlin, Heidelberg: Springer Berlin Heidelberg; pp. 535–542.
  • Younes L, Nakajima Y, Saito T. 2019. Fully automatic segmentation of the femur from 3D-CT images using primitive shape recognition and statistical shape models. Int J Comput Assist Radiol Surg. 9(2):189–196. doi:10.1007/s11548-013-0950-3.
  • Zhao C, Keyak JH, Tang J, Kaneko TS, Khosla S, Amin S, Atkinson E, Zhao L, Serou M, Zhang C, et al. 2020. A deep learning-based method for automatic segmentation of proximal femur from quantitative computed tomography images. ArXiv. abs/2006.05513.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.