56
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Hybrid generative model for grading the severity of diabetic retinopathy images

, , , &
Article: 2266048 | Received 17 Mar 2023, Accepted 27 Sep 2023, Published online: 15 Oct 2023

References

  • Akram MU, Khalid S, Tariq A, Khan SA, Azam F. 2014. Detection and classification of retinal lesions for grading of diabetic retinopathy. Comput Biol Med. 45:161–171. https://doi.org/10.1016/j.compbiomed.2013.11.014.
  • Akyol K, Bayir S, Baha S. 2017. A decision support system for early-stage diabetic retinopathy lesions. Inter J Adv Comput Sci Appl. 8(12). doi: 10.14569/IJACSA.2017.081249.
  • Al-Hazaimeh OM, Abu-Ein AA, Tahat NM, Al-Smadi MM, Al-Nawashi MM. 2022 Dec 2. Combining artificial intelligence and image processing for diagnosing diabetic retinopathy in retinal fundus images. Int J Onl Eng. 18(13):131–151. 10.3991/ijoe.v18i13.33985
  • Aljehane NO An intelligent moth flame optimization with inception network for diabetic retinopathy detection and grading. 2022 2nd International Conference on Computing and Information Technology (ICCIT). Bangladesh: IEEE.
  • Anand D, Arulselvi G, Balaji GN, Chandra GR. 2022. A deep convolutional extreme machine learning classification method to detect bone cancer from histopathological images. Int J Intell Sys Appl Eng. 10(4):39–47.
  • Anoop B 2022. Binary classification of DR-diabetic retinopathy using CNN with fundus colour images. Materials Today: Proceedings. 58:212–216.
  • Appe SRN, Arulselvi G, Balaji GN. 2023. Tomato ripeness detection and classification using VGG based CNN models. Int J Intell Sys Appl Eng. 11(1):296–302.
  • Arifoglu D, Bouchachia A. 2019. Detection of abnormal behaviour for dementia sufferers using convolutional neural networks. Artif Intell Med. 94:88–95. doi: 10.1016/j.artmed.2019.01.005.
  • Asgharzadeh-Bonab A, Amirani MC, Mehri A. 2020. Spectral entropy and deep convolutional neural network for ECG beat classification. Biocybern Biomed Eng. 40(2):691–700. doi: 10.1016/j.bbe.2020.02.004.
  • Aziz T, Charoenlarpnopparut C, Mahapakulchai S. 2023. Deep learning-based hemorrhage detection for diabetic retinopathy screening. Sci Rep. 13(1):1479. doi: 10.1038/s41598-023-28680-3.
  • Babu MJ, Geetha P, Soman K. 2016. Classification of remotely sensed algal blooms along the coast of India using support vector machines and regularized least squares. Ind J Sci Technol. 9(30):30. doi: 10.17485/ijst/2016/v9i30/99001.
  • Basha AJ, Balaji BS, Poornima S, Prathilothamai M, Venkatachalam K. 2021. RETRACTED ARTICLE: support vector machine and simple recurrent network based automatic sleep stage classification of fuzzy kernel. J Ambient Intell Humaniz Comput. 12(6):6189–6197. doi: 10.1007/s12652-020-02188-4.
  • Bhattacharya S, Sehgal J, Issac A, MK D, Burget R, Kolarik M Computer vision method for grading of health of a fundus image on basis of presence of red lesions. 2018 41st International Conference on Telecommunications and Signal Processing (TSP); Athens, Greece; 2018: IEEE.
  • Bhuvaneswari R, Ganesh Vaidyanathan S. 2021. Classification and grading of diabetic retinopathy images using mixture of ensemble classifiers. J Intell Fuzzy Syst. 41(6):7407–7419. doi: 10.3233/JIFS-211364.
  • Butt MM, Latif G, Iskandar DA, Alghazo J, Khan AH. 2019. Multi-channel convolutions neural network based diabetic retinopathy detection from fundus images. Procedia Comput Sci. 163:283–291. doi: 10.1016/j.procs.2019.12.110.
  • Cordero-Martínez R, Sánchez D, Melin P. 2023. Optimizing a convolutional neural network with a hierarchical Genetic algorithm for diabetic retinopathy detection. In Fuzzy logic and neural networks for hybrid intelligent system design. Springer International Publishing. pp. 199–208. doi: 10.1007/978-3-031-22042-5_11.
  • Damodaran N, Sowmya V, Govind D, KP S. Vol 1; 2019: Springer.
  • Decenciere E, Cazuguel G, Zhang X, Thibault G, Klein J-C, Meyer F, Marcotegui B, Quellec G, Lamard M, Danno R. 2013. TeleOphta: machine learning and image processing methods for teleophthalmology. Irbm. 34(2):196–203. doi: 10.1016/j.irbm.2013.01.010.
  • Decencière E, Zhang X, Cazuguel G, Lay B, Cochener B, Trone C, Gain P, Ordonez R, Massin P, Erginay A. 2014. Feedback on a publicly distributed image database: the Messidor database. Image Anal Stereol. 33(3):231–234. doi: 10.5566/ias.1155.
  • Ding S, Wang H, Lu H, Nappi M, Wan S. 2023. Two path gland segmentation algorithm of colon pathological image based on local semantic guidance. IEEE J Biomed Health Inform. April 27(4):1701–1708. 10.1109/JBHI.2022.3207874
  • Duh EJ. 2008. Diabetic Retinopathy. 353–373.
  • Fang L, Qiao H. 2022. Diabetic retinopathy classification using a novel DAG network based on multi-feature of fundus images. Biomed Signal Process Control. 77:103810. doi: 10.1016/j.bspc.2022.103810.
  • Gayathri S, Krishna AK, Gopi VP, Palanisamy P. 2020. Automated binary and multiclass classification of diabetic retinopathy using haralick and multiresolution features. IEEE Acces. 8:57497–57504. doi: 10.1109/ACCESS.2020.2979753.
  • Gharaibeh N, Abu-Ein AA, Al-Hazaimeh OM, Nahar KM, Abu-Ain WA, Al-Nawashi MM. 2023. Swin transformer-based segmentation and multi-scale feature pyramid fusion module for Alzheimer’s disease with machine learning. Int J Online Biomed Eng. 19(4):22–50.
  • Gharaibeh N, Al-Hazaimeh OM, Abu-Ein A, Nahar KM. 2021. A hybrid SVM NAÏVE-BAYES classifier for bright lesions recognition in eye fundus images. Int J Electr Eng Inform. 13(3):530–545.
  • Gharaibeh N, Al-Hazaimeh OM, Al-Naami B, Nahar KM. 2018. An effective image processing method for detection of diabetic retinopathy diseases from retinal fundus images. Int J Signal Imag Syst Eng. 11(4):206–216.
  • Gundluru N, Rajput DS, Lakshmanna K, Kaluri R, Shorfuzzaman M, Uddin M, Rahman Khan MA. 2022. Enhancement of detection of diabetic retinopathy using Harris hawks optimization with deep learning model. Comput Intell Neurosci. 2022:1–13. doi: 10.1155/2022/8512469.
  • Guo L, Sim G, Matuszewski B. 2019. Inter-patient ECG classification with convolutional and recurrent neural networks. Biocybern Biomed Eng. 39(3):868–879. doi: 10.1016/j.bbe.2019.06.001.
  • He A, Li T, Li N, Wang K, Fu H. 2020. Cabnet: category attention block for imbalanced diabetic retinopathy grading. IEEE Trans Med Imaging. 40(1):143–153. doi: 10.1109/TMI.2020.3023463.
  • Huang S, Li J, Xiao Y, Shen N, Xu T. 2022. Rtnet: relation transformer network for diabetic retinopathy multi-lesion segmentation. IEEE Trans Med Imaging. 41(6):1596–1607. doi: 10.1109/TMI.2022.3143833.
  • Huang W, Zhang Y, Wan S. 2022. A sorting fuzzy min-max model in an embedded system for atrial fibrillation detection. ACM Trans Multimedia Comput Commun Appl. 18(2s):1–18. doi: 10.1145/3554737.
  • Izzaty AMK, Cenggoro TW, Elwirehardja GN, Pardamean B. 2022. Multiclass classification of histology on colorectal cancer using deep learning. Commun Math Biol Neurosci. 1:224–230 .
  • Jiang H, Yang K, Gao M, Zhang D, Ma H, Qian W An interpretable ensemble deep learning model for diabetic retinopathy disease classification. 2019 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC); Berlin, German; 2019: IEEE.
  • Kamran SA, Hossain KF, Tavakkoli A, Zuckerbrod SL, Baker SA. 2021. Vtgan: semi-supervised retinal image synthesis and disease prediction using vision transformers. Proceedings of the IEEE/CVF International Conference on Computer Vision. 1:3228–3238.
  • Karthikeyan R, Alli P. 2018. Feature selection and parameters optimization of support vector machines based on hybrid glowworm swarm optimization for classification of diabetic retinopathy. J Med Syst. 42(10):1–11. doi: 10.1007/s10916-018-1055-x.
  • Kartik P, Sumanth KB, Sri Ram V, Jeyakumar G, Thampi SM, El-Alfy ESM, Trajkovic L. 2021. Decoding of graphically encoded numerical digits using deep learning and edge detection techniques. J Intell Fuzzy Syst. 41(5):5367–5374. doi: 10.3233/JIFS-189859.
  • Kumar S, Mankame DP. 2020. Optimization driven deep convolution neural network for brain tumor classification. Biocybern Biomed Eng. 40(3):1190–1204. doi: 10.1016/j.bbe.2020.05.009.
  • Lahmiri S. 2017. High‐frequency‐based features for low and high retina haemorrhage classification. Healthc Technol Lett. 4(1):20–24. doi: 10.1049/htl.2016.0067.
  • Liming L, Xin D, Renjie L, Anjun H. 2023. Classification algorithm of retinopathy based on attention mechanism and multi feature fusion. Opto-Electron Eng. 50:220199-1–220199–12.
  • Liu Y-P, Li Z, Xu C, Li J, Liang R. 2019. Referable diabetic retinopathy identification from eye fundus images with weighted path for convolutional neural network. Artif Intell Med. 99:101694. doi: 10.1016/j.artmed.2019.07.002.
  • Li J, Wu Y, Shen N, Zhang J, Chen E, Sun J, Deng Z, Zhang Y. 2020. A fully automatic computer-aided diagnosis system for hepatocellular carcinoma using convolutional neural networks. Biocybern Biomed Eng. 40(1):238–248. doi: 10.1016/j.bbe.2019.05.008.
  • Li Y-H, Yeh N-N, Chen S-J, Chung Y-C. 2019. Computer-assisted diagnosis for diabetic retinopathy based on fundus images using deep convolutional neural network. Mob Inf Syst. 2019:1–14. doi: 10.1155/2019/6142839.
  • Muljo HH, Pardamean B, Purwandari K, Cenggoro TW. 2022. Improving lung disease detection by joint learning with COVID-19 radiography database. Commun Math Biol Neurosci. 2022:1.
  • Nahiduzzaman M, Islam MR, Goni MOF, Anower MS, Ahsan M, Haider J, Kowalski M. 2023. Diabetic retinopathy identification using parallel convolutional neural network based feature extractor and ELM classifier. Expert systems with Applications.119557. Expert Syst Appl. 217:119557. doi: 10.1016/j.eswa.2023.119557.
  • Natarajan B Elakkiya R Bhuvaneswari R Saleem K Chaudhary D Samsudeen SH2023Creating alert messages based on wild animal activity detection using hybrid deep neural networks
  • Ni B, Liu Z, Cai X, et al. 2023. Segmentation of ultrasound image sequences by combing a novel deep siamese network with a deformable contour model. Neural Comput Applic. 35:14535–14549. doi: 10.1007/s00521-022-07054-2.
  • Pao S-I, Lin H-Z, Chien K-H, Tai M-C, Chen J-T, Lin G-M. 2020. Detection of diabetic retinopathy using bichannel convolutional neural network. J Ophthalmol. 2020:1–7. doi: 10.1155/2020/9139713.
  • Pascolini, D. Donatella, Silvio P. M. 2012. Global estimates of visual impairment: 2010 British Journal of Ophthalmology.96:614–618.
  • Prabha, S, Reddy, M. A, Sreehari, M, Sankaran, K. S. 2022. Machine Learning Technique for Analysing the Diabetic Retinopathy. International Conference on Sustainable Computing and Data Communication Systems (ICSCDS); Erode, Tamil Nadu, India; IEEE.
  • Roychowdhury S, Koozekanani DD, Parhi KK. 2013. DREAM: diabetic retinopathy analysis using machine learning. IEEE J Biomed Health Inform. 18(5):1717–1728. doi: 10.1109/JBHI.2013.2294635.
  • Sahlsten J, Jaskari J, Kivinen J, Turunen L, Jaanio E, Hietala K, Kaski K. 2019. Deep learning fundus image analysis for diabetic retinopathy and macular edema grading. Sci Rep. 9(1):10750. doi: 10.1038/s41598-019-47181-w.
  • Sengan S, Arokia Jesu Prabhu L, Ramachandran V, Priya V, Ravi L, Subramaniyaswamy V, Varadarajan V, Kommers P, Piuri V, Subramaniyaswamy V. 2020. Images super-resolution by optimal deep AlexNet architecture for medical application: a novel DOCALN. J Intell Fuzzy Syst. 39(6):8259–8272. doi: 10.3233/JIFS-189146.
  • Sountharrajan S, Suganya E, Karthiga M, Rajan C. 2018. Automatic glioblastoma multiforme detection using hybrid-SVM with improved particle swarm optimisation. Int J Biomed Eng Technol. 26(3–4):353–364. doi: 10.1504/IJBET.2018.089969.
  • Stitson M, Weston J, Gammerman A, Vovk V, Vapnik V. 1996. Theory of support vector machines. Univ London. 117(827):188–191.
  • Wu Y, Kong Q, Zhang L, Castiglione A, Nappi M and Wan S, “CDT-CAD: context-aware deformable transformers for end-to-end chest abnormality detection on X-Ray images,” in IEEE/ACM Transactions on Computational Biology and Bioinformatics, doi: 10.1109/TCBB.2023.3258455.
  • Wu H, Xie P, Zhang H, Li D, Cheng M. 2020. Predict pneumonia with chest X-ray images based on convolutional deep neural learning networks. J Intell Fuzzy Syst. 39(3):2893–2907. doi: 10.3233/JIFS-191438.
  • Yu S, Ma K, Bi Q, Bian C, Ning M, He N, Li Y, Liu H, Zheng Y Mil-vt: multiple instance learning enhanced vision transformer for fundus image classification. Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, 2021: Springer.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.