108
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Robust semi-automatic segmentation method: an expert assistant tool for muscles in CT and MR data

, , , , , , , & show all
Article: 2301403 | Received 19 Sep 2022, Accepted 28 Dec 2023, Published online: 21 Jan 2024

References

  • Albu AB, Beugeling T, Laurendeau D. 2008. A morphology-based approach for interslice interpolation of anatomical slices from volumetric images. IEEE Trans Biomed Eng. 55(8):2022–2038. doi: 10.1109/TBME.2008.921158.
  • Alhusuny A, Cook M, Khalil A, Hill A, Johnston V. 2022. The relationship between visual impairments and activity of the neck/shoulder muscles among surgeons during simulated surgical tasks. Surg Endosc. 36(7):5326–5338. doi: 10.1007/s00464-021-08913-0.
  • Andrews S, Hamarneh G. 2015. The generalized log-ratio transformation: learning shape and adjacency priors for simultaneous thigh muscle segmentation. IEEE Trans Med Imaging. 34(9):1773–1787. doi: 10.1109/TMI.2015.2403299.
  • Azimbagirad M, Dardenne G, Ben Salem D, Rémy-Néris O, Burdin V 2021a. Combined multi-protocols qMRI for thigh muscle analysis: a preliminary study. Paper presented at: SIPAIM-SIIM 2021. Proceedings of 17th International Symposium on Medical Information Processing and Analysis; Nov 17–19; Brazil.
  • Azimbagirad M, Dardenne G, Ben Salem D, Rémy-Néris O, Burdin V 2021b. Towards the definition of a patient-specific rehabilitation program for TKA: a new MRI-based approach for the easy volumetric analysis of thigh muscles. Paper presented at: IEEE (EMBC) 2021. Proceedings of the 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); Nov 1–5; Mexico.
  • Azimbagirad M, da Silva Senra Filho AC, dos Santos AC, Murta LO Jr. 2019. Partial volume transfer (PVT) conversion of cerebral tissue volumes between different magnetic fields MRI. Res Biomed Eng. 35(1):11–20. doi: 10.1007/s42600-019-00003-4.
  • Bakas S, Chatzimichail K, Hunter G, Labbé B, Sidhu PS, Makris D. 2015. Fast semi-automatic segmentation of focal liver lesions in contrast-enhanced ultrasound, based on a probabilistic mode. Comput Methods Biomech Biomed Eng Imaging Vis. 5(5):329–338. doi: 10.1080/21681163.2015.1029642.
  • Barber-Westin S, Noyes FR. 2022. Effect of Preoperative Rehabilitation on Clinical Outcomes and Function After Knee Arthroplasty. In: Noyes F, and Barber-Westin S, editors Critical Rehabilitation for Partial and Total Knee Arthroplasty: Guidelines and Objective Testing to Allow Return to Physical Function, Recreational and Sports Activities. Cham: Springer; p. 79–92. doi:10.1007/978-3-030-87003-4_5.
  • Boutillon A, Conze PH, Pons C, Burdin V, Borotikar B. 2022. Generalizable multi-task, multi-domain deep segmentation of sparse pediatric imaging datasets via multi-scale contrastive regularization and multi-joint anatomical priors. Med Image Anal. 81:102556. doi: 10.1016/j.media.2022.102556.
  • Chanti DA, Duque VG, Crouzier M, Nordez A, Lacourpaille L, Mateus D. 2021. IFSS-Net: interactive few-shot siamese network for faster muscle segmentation and propagation in volumetric ultrasound. IEEE Trans Med Imaging. 40(10):2615–2628. doi: 10.1109/TMI.2021.3058303.
  • Conti V, Militello C, Rundo L, Vitabile S. 2020. A novel bio-inspired approach for high-performance management in service-oriented networks. IEEE Trans Emerg Topics Comput. 9(4):1709–1722. doi: 10.1109/TETC.2020.3018312.
  • Conze PH, Brochard S, Burdin V, Sheehan FT, Pons C. 2020. Healthy versus pathological learning transferability in shoulder muscle MRI segmentation using deep convolutional encoder-decoders. Comput Med Imaging Graph. 83:1–12. doi: 10.1016/j.compmedimag.2020.101733.
  • Cordeiro FR, Santos WP, Silva-Filho AG. 2017. Analysis of supervised and semi-supervised GrowCut applied to segmentation of masses in mammography images. Comput Methods Biomech Biomed Eng Imaging Vis. 5(4):297–315. doi: 10.1080/21681163.2015.1127775.
  • Ghatas MP, Lester RM, Khan MR, Gorgey AS. 2018. Semi-automated segmentation of magnetic resonance images for thigh skeletal muscle and fat using threshold technique after spinal cord injury. Neural Regen Res. 13(10):1787–1795. doi: 10.4103/1673-5374.238623.
  • Gilles B, Magnenat-Thalmann N. 2010. Musculoskeletal MRI segmentation using multi-resolution simplex meshes with medial representations. Med Image Anal. 14(3):291–302. doi: 10.1016/j.media.2010.01.006.
  • Harmouche R, Ross JC, Washko GR, San José Estépar R. 2014. Pectoralis muscle segmentation on ct images based on bayesian graph cuts with a subject-tailored atlas. Proceedings of the Medical Computer Vision: Algorithms for Big Data: International Workshop, Held in Conjunction with MICCAI 2014, September 18. Cambridge, MA, USA: Springer International Publishing. doi:10.1007/978-3-319-13972-2_4.
  • Hiasa Y, Otake Y, Takao M, Ogawa T, Sugano N, Sato Y. 2020. Automated Muscle Segmentation from Clinical CT Using Bayesian U-Net for Personalized Musculoskeletal Modeling. IEEE Trans Med Imaging. 39(4):1030–1040. doi: 10.1109/TMI.2019.2940555.
  • Hofmanninger J, Prayer F, Pan J, Röhrich S, Prosch H, Langs G. 2020. Automatic lung segmentation in routine imaging is primarily a data diversity problem, not a methodology problem. Eur Radiol Exp. 4(1). doi: 10.1186/s41747-020-00173-2.
  • Hossain I, Roberts-South A, Jog M, El-Sakka MR. 2014. Semi-automatic assessment of hyoid bone motion in digital videofluoroscopic images. Comput Methods Biomech Biomed Eng Imaging Vis. 2(1):25–37. doi: 10.1080/21681163.2013.833859.
  • Jansen J, Schreurs R, Dubois L, Maal TJJ, Gooris PJJ, Becking AG. 2016. Orbital volume analysis: validation of a semi-automatic software segmentation method. Int J Comput Assist Radiol Surg. 11(1):11–18. doi: 10.1007/s11548-015-1254-6.
  • Jaspers K, Freling HG, van Wijk K, Romijn EI, Greuter MJW, Willems TP. 2013. Improving the reproducibility of MR-derived left ventricular volume and function measurements with a semi-automatic threshold-based segmentation algorithm. Int J Cardiovasc Imaging. 29(3):617–623. doi: 10.1007/s10554-012-0130-5.
  • Jolivet E, Dion E, Rouch P, Dubois G, Charrier R, Payan C, Skalli W. 2014. Skeletal muscle segmentation from MRI dataset using a model-based approach. Comput Methods Biomech Biomed Eng Imaging Vis. 2(3):138–145. doi: 10.1080/21681163.2013.855146.
  • Kao CY, Richdale K, Sinnott LT, Grillott LE, Bailey MD. 2011. Semiautomatic extraction algorithm for images of the ciliary muscle. Optom Vis Sci. 88(2):275–289. doi: 10.1097/OPX.0b013e3182044b94.
  • Kemnitz J, Baumgartner CF, Eckstein F, Chaudhari A, Ruhdorfer A, Wirth W, Eder SK, Konukoglu E. 2020. Clinical evaluation of fully automated thigh muscle and adipose tissue segmentation using a U-Net deep learning architecture in context of osteoarthritic knee pain. Magn Reson Mater Phy. 33(4):483–493. doi: 10.1007/s10334-019-00816-5.
  • Lorensen WE, Cline HE. 1987. Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput Graphics. 21(4):163–169. doi: 10.1145/37402.37422.
  • Lui D, Scharfenberger C, De Carvalho DE, Callaghan JP, Wong A. 2014. Semi-automatic fisher-tippett guided active contour for lumbar multifidus muscle segmentation. Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; IEEE, p. 5530–5533. doi: 10.1109/EMBC.2014.6944879.
  • Mahmoudi R, Benameur N, Badii H, Bedoui MH. 2021. Mitral valve leaflets segmentation approaches based upon Frangi filter and ISODATA clustering. Comput Methods Biomech Biomed Eng Imaging Vis. 9(6):678–689. doi: 10.1080/21681163.2021.1936648.
  • Malmberg F, Nordenskjöld R, Strand R, Kullberg J. 2014. SmartPaint: a tool for interactive segmentation of medical volume images. Comput Methods Biomech Biomed Eng Imaging Vis. 5(1):36–44. doi: 10.1080/21681163.2014.960535.
  • Ni R, Meyer CH, Blemker SS, Hart JM, Feng X. 2019. Automatic segmentation of all lower limb muscles from high-resolution magnetic resonance imaging using a cascaded three-dimensional deep convolutional neural network. J Med Imag. 6(4):044009. doi: 10.1117/1.JMI.6.4.044009.
  • Ogier AC, Heskamp L, Michel CP, Fouré A, Bellemare ME, Le Troter A, Heerschap A, Bendahan D. 2020. A novel segmentation framework dedicated to the follow-up of fat infiltration in individual muscles of patients with neuromuscular disorders. Magn Reson Med. 83(5):1825–1836. doi: 10.1002/mrm.28030.
  • Paxton NC, Nightingale RC, Woodruff MA. 2022. Capturing patient anatomy for designing and manufacturing personalized prostheses. Curr Opin Biotechnol. 73:282–289. doi: 10.1016/j.copbio.2021.09.004.
  • Pérez-Carrasco JA, Acha B, Suárez-Mejías C, López-Guerra JL, Serrano C. 2018. Joint segmentation of bones and muscles using an intensity and histogram-based energy minimization approach. Comput Methods Programs Biomed. 156(3):85–95. doi: 10.1016/j.cmpb.2017.12.027.
  • Pons C, Borotikar B, Garetier M, Burdin V, Ben Salem D, Lempereur M, Brochard S, Nordez A. 2018. Quantifying skeletal muscle volume and shape in humans using MRI: a systematic review of validity and reliability. PLoS ONE. 13(11):e0207847. doi: 10.1371/journal.pone.0207847.
  • Popuri K, Cobzas D, Esfandiari N, Baracos V, Jägersand M. 2016. Body composition assessment in axial CT images using FEM-Based automatic segmentation of skeletal muscle. IEEE Trans Med Imaging. 35(2):512–520. doi: 10.1109/TMI.2015.2479252.
  • Ramos JS, Cazzolato MT, Faiçal BS, Linares OAC, Nogueira-Barbosa MH, Traina C, Traina AJM. 2019. Fast and Smart Segmentation of Paraspinal Muscles in Magnetic Resonance Imaging with CleverSeg. Proceedings of the 32nd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), p. 76–83. doi:10.1109/SIBGRAPI.2019.00019
  • Taha AA, Hanbury A. 2015. Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med Imaging. 15(1):29. doi: 10.1186/s12880-015-0068-x.
  • Yokota F, Otake Y, Takao M, Ogawa T, Okada T, Sugano N, Sato Y. 2018. Automated muscle segmentation from CT images of the hip and thigh using a hierarchical multi-atlas method. Int J Comput Assist Radiol Surg. 13(7):977–986. doi: 10.1007/s11548-018-1758-y.
  • Zebari DA, Zeebaree DQ, Abdulazeez AM, Haron H, Hamed HNA. 2020. Improved threshold based and trainable fully automated segmentation for breast cancer boundary and pectoral muscle in mammogram images. IEEE Access. 8:203097–203116. doi: 10.1109/ACCESS.2020.3036072.
  • Zeng C, Koonce RC, Tavel HM, Argosino SE, Kiepe DA, Lyons EE, Ford MA, Steiner CA. 2022. Pre-operative predictors for discharge to post-acute care facilities after total knee arthroplasty. J Arthroplasty. 37(1):31–38.e2. doi: 10.1016/j.arth.2021.09.019.
  • Zhou GQ, Zheng YP. 2015. Automatic fascicle length estimation on muscle ultrasound images with an orientation-sensitive segmentation. IEEE Trans Biomed Eng. 62(12):2828–2836. doi: 10.1109/TBME.2015.2445345.
  • Zhu J, Bolsterlee B, Chow BVY, Cai C, Herbert RD, Song Y, Meijering E. 2021. Deep learning methods for automatic segmentation of lower leg muscles and bones from MRI scans of children with and without cerebral palsy. NMR Biomed. 34(12):e4609. doi: 10.1002/nbm.4609.
  • Zukić D, Vicory J, McCormick M, Wisse L, Gerig G, Yushkevich P, Aylward S 2016. ND morphological contour interpolation. Insight J. doi: 10.54294/achtrg.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.