2,448
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Analysis of EEG signals and data acquisition methods: a review

, ORCID Icon, , , & ORCID Icon
Article: 2304574 | Received 05 Nov 2023, Accepted 08 Jan 2024, Published online: 27 Feb 2024

References

  • Abd El-Samie FE, Alotaiby TN, Khalid MI, Alshebeili SA, Aldosari SA. 2018. A review of EEG and MEG epileptic spike detection algorithms. IEEE Acces. 6:60673–26. doi: 10.1109/ACCESS.2018.2875487.
  • Akbari H, Sadiq MT, Payan M, Esmaili SS, Baghri H, Bagheri H. 2021 Feb. Depression detection based on geometrical features extracted from sodp shape of EEG signals and binary PSO. Trait Signal. 38(1):13–26. doi: 10.18280/TS.380102.
  • Akbari H, Tariq Sadiq M, Jafari N, Too J, Mikaeilvand N, Cicone A, Serra-Capizzano S. 2023. Recognizing seizure using Poincaré plot of EEG signals and graphical features in DWT domain. Bratisl Lek Listy. 124(1):12–24. doi: 10.4149/BLL_2023_002.
  • Almuhammadi WS, Aboalayon KAI, Faezipour M. 2015. Efficient obstructive sleep apnea classification based on EEG signals. Undefined. doi: 10.1109/LISAT.2015.7160186.
  • Anitha C. 2019. Detection and analysis of drowsiness in human beings using multimodal signalspp. 157–174. doi: 10.1007/978-3-319-93940-7_7.
  • Anjum MF, Dasgupta S, Mudumbai R, Singh A, Cavanagh JF, Narayanan NS. 2020 Oct. Linear predictive coding distinguishes spectral EEG features of Parkinson’s disease. Parkinsonism Relat Disord. 79:79–85. doi: 10.1016/j.parkreldis.2020.08.001.
  • Bajaj V, Taran S, Khare SK, Sengur A. 2020 Jun. Feature extraction method for classification of alertness and drowsiness states EEG signals. Appl Acoust. 163:107224. doi: 10.1016/j.apacoust.2020.107224.
  • Bajaj V, Taran S, Sengur A. 2018 Dec. Emotion classification using flexible analytic wavelet transform for electroencephalogram signals. Health Inf Sci Syst. 6(1):12. doi: 10.1007/s13755-018-0048-y.
  • Bhattacharjee A, Saha S, Fattah SA, Zhu W-P, Ahmad MO. 2019 May. Sleep apnea detection based on rician modeling of feature variation in multiband EEG signal. IEEE J Biomed Health Inform. 23(3):1066–1074. doi: 10.1109/JBHI.2018.2845303.
  • Boonnak N, Kamonsantiroj S, Pipanmaekaporn L. 2015 Aug. Wavelet Transform Enhancement for Drowsiness Classification in EEG Records Using Energy Coefficient Distribution and neural network. Int J Mach Learn Comput. 5(4):288–293. doi: 10.7763/IJMLC.2015.V5.522.
  • Boostani R, Sadatnezhad K, Sabeti M. 2009. An efficient classifier to diagnose of schizophrenia based on the EEG signals. Expert Syst Appl. 36(3 PART 2):6492–6499. doi: 10.1016/J.ESWA.2008.07.037.
  • Budak U, Bajaj V, Akbulut Y, Atila O, Sengur A. 2019 Sep. An effective hybrid Model for EEG-Based drowsiness detection. IEEE Sens J. 19(17):7624–7631. doi: 10.1109/JSEN.2019.2917850.
  • Chang H-H, Moura JMF. 2018 Nov. Biomedical Signal Processing. Undefined. 245–278. doi: 10.1201/9780849338595-8.
  • Chaturvedi M, Hatz F, Gschwandtner U, Bogaarts JG, Meyer A, Fuhr P, Roth V. 2017 Jan. Quantitative EEG (QEEG) measures differentiate Parkinson’s disease (PD) patients from healthy controls (HC). In Front aging neurosci Vol. 9. JAN; doi: 10.3389/fnagi.2017.00003.
  • Chaudhary S, Taran S, Bajaj V, Sengur A. 2019 Jun. Convolutional Neural Network Based Approach Towards Motor Imagery Tasks EEG signals classification. IEEE Sensors J. 19(12):4494–4500. doi: 10.1109/JSEN.2019.2899645.
  • Chaudhary S, Taran S, Bajaj V, Siuly S. 2020 Apr. A flexible analytic wavelet transform based approach for motor-imagery tasks classification in BCI applications. Comput Methods Programs Biomed. 187:105325. doi: 10.1016/j.cmpb.2020.105325.
  • de Oliveira APS, de Santana MA, Andrade MKS, Gomes JC, Rodrigues MCA, dos Santos WP. 2020 Sep. Early diagnosis of Parkinson’s disease using EEG, machine learning and partial directed coherence. Res Biomed Eng. 36(3):311–331. doi: 10.1007/s42600-020-00072-w.
  • Devia C, Mayol-Troncoso R, Chile S, Parrini J, Orellana G, Ruiz A, Maldonado PE, Ignacio J. 2019 Jun. EEG classification during scene free-viewing for schizophrenia detection. IEEE Trans Neural Syst Rehabil Eng. 27(6):1193–1199. doi: 10.1109/TNSRE.2019.2913799.
  • Drissi TB, Zayrit S, Nsiri B, and Ammoummou A, “Diagnosis of Parkinson’s disease based on Wavelet Transform and mel frequency cepstral coefficients,” 2019. [Online]. Available: www.ijacsa.thesai.org
  • El-Dahshan ESA, Bassiouni MM, Khare SK, Tan RS, Rajendra Acharya U. 2024 Apr. ExHyptNet: an explainable diagnosis of hypertension using EfficientNet with PPG signals. Expert Syst Appl. 239:122388. doi: 10.1016/J.ESWA.2023.122388.
  • Gadhoumi K, Lina JM, Mormann F, Gotman J. 2016 Feb. Seizure prediction for therapeutic devices: a review. J Neurosci Methods. 260:270–282. doi: 10.1016/J.JNEUMETH.2015.06.010.
  • Galgano M, Toshkezi G, Qiu X, Russell T, Chin L, Zhao L-R. 2017 Jul. Traumatic brain injury. Cell Transplant. 26(7):1118–1130. doi:10.1177/0963689717714102.
  • Garces Correa A and Laciar Leber E, “An automatic detector of drowsiness based on spectral analysis and wavelet decomposition of EEG records,” in 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, IEEE, Aug. 2010, pp. 1405–1408. doi: 10.1109/IEMBS.2010.5626721.
  • Garcés Correa A, Orosco L, Laciar E. 2014 Feb. Automatic detection of drowsiness in EEG records based on multimodal analysis. Med Eng Phys. 36(2):244–249. doi: 10.1016/j.medengphy.2013.07.011.
  • Health home | Johns Hopkins Medicine. 2023b Feb 2. [Online]. Available: https://www.hopkinsmedicine.org/health/
  • Holdgraf C, Appelhoff S, Bickel S, Bouchard K, D’Ambrosio S, David O, Devinsky O, Dichter B, Flinker A, Foster BL, et al. 2019 Jun. iEEG-BIDS, extending the brain imaging data structure specification to human intracranial electrophysiology. Sci Data. 6(1):1–6. doi: 10.1038/s41597-019-0105-7.
  • Hosseini MP, Hosseini A, Ahi K. 2021. A review on machine learning for EEG Signal Processing in bioengineering. IEEE Rev Biomed Eng. 14:204–218. doi: 10.1109/RBME.2020.2969915.
  • Ince NF, Goksu F, Tewfik AH, Arica S. 2009 Jul. Adapting subject specific motor imagery EEG patterns in space–time–frequency for a brain computer interface. Biomed Signal Process Control. 4(3):236–246. doi: 10.1016/j.bspc.2009.03.005.
  • Jahmunah V, Lih Oh S, Rajinikanth V, Ciaccio EJ, Hao Cheong K, Arunkumar N, Acharya UR. 2019 Sep. Automated detection of schizophrenia using nonlinear signal processing methods. Artif Intell Med. ;100:101698. doi: 10.1016/J.ARTMED.2019.07.006.
  • Jeong DH, Do Kim Y, Song IU, Chung YA, Jeong J. 2016. Wavelet energy and wavelet coherence as eeg biomarkers for the diagnosis of Parkinson’s disease-related dementia and Alzheimer’s disease. Entropy. 18(1):8. doi: 10.3390/e18010008.
  • Johannesen JK, Bi J, Jiang R, Kenney JG, Chen C-MA. 2016 Dec. Machine learning identification of EEG features predicting working memory performance in schizophrenia and healthy adults. Neuropsychiatr Electrophysiol. 2(1):3. doi: 10.1186/s40810-016-0017-0.
  • Kevric J, Subasi A. 2017 Jan. Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system. Biomed Signal Process Control. 31:398–406. doi: 10.1016/j.bspc.2016.09.007.
  • Khare SK, Acharya UR. 2023a Oct. Adazd-net: automated adaptive and explainable Alzheimer’s disease detection system using EEG signals. Knowl Based Syst. 278:110858. doi: 10.1016/J.KNOSYS.2023.110858.
  • Khare SK, Acharya UR. 2023b Mar. An explainable and interpretable model for attention deficit hyperactivity disorder in children using EEG signals. Comput Biol Med. 155:106676. doi: 10.1016/J.COMPBIOMED.2023.106676.
  • Khare SK, Bajaj V. 2020 Dec. A facile and flexible motor imagery classification using electroencephalogram signals. Comput Methods Programs Biomed. 197:105722. doi: 10.1016/j.cmpb.2020.105722.
  • Khare SK, Bajaj V. 2021a Mar. Entropy-based drowsiness detection using adaptive variational mode decomposition. IEEE Sens J. 21(5):6421–6428. doi: 10.1109/JSEN.2020.3038440.
  • Khare SK, Bajaj V. 2021b Jan. An evolutionary optimized variational mode decomposition for emotion recognition. IEEE Sens J. 21(2):2035–2042. doi: 10.1109/JSEN.2020.3020915.
  • Khare SK, Bajaj V. 2021c Jul. Time–frequency representation and convolutional neural network-based emotion recognition. IEEE Trans Neural Netw Learn Syst. 32(7):2901–2909. doi: 10.1109/TNNLS.2020.3008938.
  • Khare SK, Bajaj V. 2022 Feb. Optimized tunable Q wavelet transform based drowsiness detection from electroencephalogram signals. IRBM. 43(1):13–21. doi: 10.1016/j.irbm.2020.07.005.
  • Khare SK, Bajaj V, Acharya UR. 2021a Apr. Detection of Parkinson’s disease using automated tunable Q wavelet transform technique with EEG signals. Biocybern Biomed Eng. 41(2):679–689. doi: 10.1016/j.bbe.2021.04.008.
  • Khare SK, Bajaj V, Acharya UR. 2021b Aug. Pdcnnet: an automatic framework for the detection of Parkinson’s disease using EEG signals. IEEE Sens J. 21(15):17017–17024. doi: 10.1109/JSEN.2021.3080135.
  • Khare SK, Bajaj V, Acharya UR. 2021c. SPWVD-CNN for automated detection of schizophrenia patients using EEG signals. IEEE Trans Instrum Meas. 70:1–9. doi: 10.1109/TIM.2021.3070608.
  • Khare SK, Blanes-Vidal V, Nadimi ES, Acharya UR. 2024 Feb. Emotion recognition and artificial intelligence: a systematic review (2014–2023) and research recommendations. Inform Fusion. 102:102019. doi: 10.1016/J.INFFUS.2023.102019.
  • Khare SK, Gadre VM, Acharya R. 2023 Nov. ECGPsychNet: an optimized hybrid ensemble model for automatic detection of psychiatric disorders using ECG signals. Physiol Meas. 44(11):115004. doi:10.1088/1361-6579/AD00FF
  • Khare SK, Gaikwad NB, Bajaj V. 2022. VHERS: a novel variational mode decomposition and Hilbert transform-based EEG rhythm separation for automatic ADHD detection. IEEE Trans Instrum Meas. 71. doi: 10.1109/TIM.2022.3204076.
  • Khare SK, March S, Barua PD, Gadre VM, Acharya UR. 2023 Nov. Application of data fusion for automated detection of children with developmental and mental disorders: a systematic review of the last decade. Inform Fusion. 99:101898. doi: 10.1016/J.INFFUS.2023.101898.
  • Kim JW, Lee YS, Han DH, Min KJ, Lee J, Lee K. 2015 Mar. Diagnostic utility of quantitative EEG in un-medicated schizophrenia. Neurosci Lett. 589:126–131. doi: 10.1016/j.neulet.2014.12.064.
  • Krishna AH, Sri AB, Priyanka KYVS, Taran S, Bajaj V. 2019 May. Emotion classification using EEG signals based on tunable‐ Q wavelet transform. IET Sci, Measur & Tech. 13(3):375–380. doi: 10.1049/iet-smt.2018.5237.
  • Kuhlmann L, Lehnertz K, Richardson MP, Schelter B, Zaveri HP. 2018 Oct. Seizure prediction - ready for a new era. Nat Rev Neurol. 14(10):618–630. doi: 10.1038/S41582-018-0055-2.
  • Lee RG, Chen CC, Hsiao CC, Wang HW, Wei MS. 2012 Apr. SLEEP APNEA SYNDROME RECOGNITION USING the GREYART NETWORK. Biomed Engi: App, Basis And Comm. 23(3):163–172. doi: 10.4015/S1016237211002505.
  • Lin R, Lee R, Tseng C, Zhou H, Chao CF, Jiang J. 2006. A new approach for identifying sleep apnea syndrome using wavelet transform and neural networks. Biomedical Engineering: Applications, Basis and Communications. 18:138–143.
  • Lin YP, Wang CH, Jung TP, Wu TL, Jeng SK, Duann JR, Chen JH. 2010. EEG-based emotion recognition in music listening. IEEE Trans Biomed Eng. 57(7):1798–1806. doi: 10.1109/TBME.2010.2048568.
  • Liu G, Zhang Y, Hu Z, Du X, Wu W, Xu C, Wang X, Li S. 2017. Complexity Analysis of Electroencephalogram Dynamics in patients with Parkinson’s disease. Parkinsons Dis. 2017:1–9. doi: 10.1155/2017/8701061.
  • Majdalawieh O, Gu J, Bai T, and Cheng G, “Biomedical Signal Processing and Rehabilitation Engineering: a review,” IEEE Pacific RIM Conference on Communications, Computers, and Signal Processing - Proceedings, vol. II, pp. 1004–1007, 2003, doi: 10.1109/PACRIM.2003.1235954.
  • Mormann F, Andrzejak RG, Elger CE, Lehnertz K. 2007. Seizure prediction: the long and winding road. Brain. 130(Pt 2):314–333. doi: 10.1093/BRAIN/AWL241.
  • Murugappan M, Alshuaib W, Bourisly AK, Khare SK, Sruthi S, Bajaj V, Gopinath SCB. 2020 Nov. Tunable Q wavelet transform based emotion classification in Parkinson’s disease using electroencephalography. PloS ONE. 15(11):e0242014. doi: 10.1371/journal.pone.0242014.
  • Murugappan M, Ramachandran N, Sazali Y, Murugappan M, Ramachandran N, Sazali Y. 2010 Apr. Classification of human emotion from EEG using discrete wavelet transform. J Biomed Sci Eng. 3(4):390–396. 10.4236/JBISE.2010.34054
  • Oh SL, Hagiwara Y, Raghavendra U, Yuvaraj R, Arunkumar N, Murugappan M, Rajendra Acharya U. 2020 Aug. A deep learning approach for Parkinson’s disease diagnosis from EEG signals. Neural Comput Appl. 32(15):10927–10933. doi: 10.1007/s00521-018-3689-5.
  • Oung QW, Muthusamy H, Basah SN, Lee H, Vijean V. 2018 Feb. Empirical wavelet transform based features for classification of Parkinson’s disease severity. J Med Syst. 42(2):29. doi:10.1007/s10916-017-0877-2
  • Parkinson’s disease - symptoms and causes - mayo clinic. Accessed: Feb 2, 2023c. [Online]. Available: https://www.mayoclinic.org/diseases-conditions/parkinsons-disease/symptoms-causes/syc-20376055
  • Park S-H, Lee D, Lee S-G. 2018 Feb. Filter bank regularized common spatial pattern ensemble for small sample motor imagery classification. IEEE Trans Neural Syst Rehabil Eng. 26(2):498–505. doi:10.1109/TNSRE.2017.2757519
  • Penzel T, Kesper K, Becker HF. 2006 Oct. Biosignal Monitoring and Recording. Information Technology Solutions For Healthcare. 288–301. doi: 10.1007/1-84628-141-5_13.
  • Pernet CR, Appelhoff S, Gorgolewski KJ, Flandin G, Phillips C, Delorme A, Oostenveld R. 2019. EEG-BIDS, an extension to the brain imaging data structure for electroencephalography. Sci Data. 6:103. doi: 10.1038/s41597-019-0104-8.
  • Péron J, Dondaine T, le Jeune F, Grandjean D, Vérin M. 2012 Feb. Emotional processing in Parkinson’s disease: a systematic review. Mov Disorders. 27(2):186–199. doi:10.1002/mds.24025
  • Piryatinska A, Darkhovsky B, Kaplan A. 2017 Dec. Binary classification of multichannel-EEG records based on the ϵ-complexity of continuous vector functions. Comput Methods Programs Biomed. 152:131–139. doi: 10.1016/j.cmpb.2017.09.001.
  • Raghavendra U, Gudigar A, Paul A, Goutham TS, Inamdar MA, Hegde A, Devi A, Ooi CP, Deo RC, Barua PD, et al. 2023 Sep. Brain tumor detection and screening using artificial intelligence techniques: Current trends and future perspectives. Comput Biol Med. ;163:107063. doi: 10.1016/J.COMPBIOMED.2023.107063.
  • Rajput A, Soni P, Awasthi A. 2017 Jul. Result analysis of noise removal in ECG Signal using wavelet decomposition technique. Int J Comput Appl. 170(4):1–4. doi: 10.5120/IJCA2017914807.
  • Rasheed K, Qayyum A, Qadir J, Sivathamboo S, Kwan P, Kuhlmann L, O’Brien T, Razi A. 2021. Machine learning for predicting epileptic seizures using EEG signals: a review. IEEE Rev Biomed Eng. 14:139–155. doi: 10.1109/RBME.2020.3008792.
  • Repovš G. 2010. Repovš G: dealing with noise in EEG Recording and Data Analysis 18 dealing with noise in EEG Recording and Data Analysis Spoprijemanje s šumom pri zajemanju in analizi EEG signala. Informatica Medica Slovenica. 15(1):18–25.
  • Ruffini G, Ibaez D, Castellano M, Dubreuil-Vall L, Soria-Frisch A, Postuma R, Gagnon JF, Montplaisir J. 2019. Deep learning with EEG spectrograms in rapid eye movement behavior disorder. Front Neurol. 10:806. doi: 10.3389/fneur.2019.00806.
  • Sabeti M, Boostani R, Katebi SD, Price GW. 2007. Selection of relevant features for EEG signal classification of schizophrenic patients. Biomed Signal Process Control. 2(2):122–134. doi: 10.1016/J.BSPC.2007.03.003.
  • Sadiq MT, Akbari H, Siuly S, Li Y, Wen P. 2022 May. Alcoholic EEG signals recognition based on phase space dynamic and geometrical features. Chaos Soliton Fract. 158:112036. doi:10.1016/J.CHAOS.2022.112036.
  • Sadiq MT, Yu X, Yuan Z, Aziz MZ. 2020 Dec. Motor imagery BCI classification based on novel two-dimensional modelling in empirical wavelet transform. Electron Lett. 56(25):1367–1369. doi:10.1049/EL.2020.2509
  • Sadiq MT, Yu X, Yuan Z, Aziz MZ, Siuly S, Ding W. 2021 Aug. Toward the development of versatile brain–computer interfaces. IEEE Trans Artif Intell. 2(4):314–328. doi: 10.1109/TAI.2021.3097307.
  • Sadiq MT, Yu X, Yuan Z, China X, Aziz MZ, Rehman N. 2022. “Motor imagery BCI classification based on multivariate variational mode decomposition,” IEEE Trans Emerg Top Comput Intell. doi: 10.1109/TETCI.2022.3147030.
  • Sadiq MT, Yu X, Yuan Z, Zemi R, Rehman AU, Ullah I, Li G, Xiao G. 2019. Motor imagery EEG signals decoding by multivariate empirical wavelet transform-based framework for robust brain-computer interfaces. IEEE Acces. 7:171431–171451. doi: 10.1109/ACCESS.2019.2956018.
  • Shahnaz C, Minhaz AT, and Ahamed ST, “Sub-frame based apnea detection exploiting delta band power ratio extracted from EEG signals,” in 2016 IEEE Region 10 Conference (TENCON), IEEE, Nov. 2016, pp. 190–193. doi: 10.1109/TENCON.2016.7847987.
  • Sharma M, Acharya UR. 2021 Aug. Automated detection of schizophrenia using optimal wavelet-based 1norm features extracted from single-channel EEG. Cogn Neurodyn. 15(4):661–674. doi:10.1007/s11571-020-09655-w
  • Sharma M, Bapodara S, Tiwari J, Acharya UR. 2022 Jan. Automated sleep apnea detection in pregnant women using wavelet-based features. Inform Med Unlocked. 32:101026. doi:10.1016/J.IMU.2022.101026.
  • Sharma S, Khare SK, Bajaj V, Ansari IA. 2021 Oct. Improving the separability of drowsiness and alert EEG signals using analytic form of wavelet transform. Appl Acoust. 181:108164. doi:10.1016/j.apacoust.2021.108164.
  • Sharma PC, Raja R, Vishwakarma SK, Sharma S, Mishra PK, Kushwah VS. 2022 Nov. Analysis of brain signal processing and real-time EEG signal enhancement. Multimed Tools Appl. 81(28):41013–41033. 10.1007/s11042-022-12887-z
  • Shim M, Hwang H-J, Kim D-W, Lee S-H, Im C-H. 2016 Oct. Machine-learning-based diagnosis of schizophrenia using combined sensor-level and source-level EEG features. Schizophr Res. 176(2–3):314–319. doi:10.1016/j.schres.2016.05.007
  • Shoeibi A, Ghassemi N, Khodatars M, Moridian P, Alizadehsani R, Zare A, Khosravi A, Subasi A, Rajendra Acharya U, Gorriz JM, et al. 2022 Mar. Detection of epileptic seizures on EEG signals using ANFIS classifier, autoencoders and fuzzy entropies. Biomed Signal Process Control. ;73:103417. doi: 10.1016/J.BSPC.2021.103417.
  • Siuly S, Khare SK, Bajaj V, Wang H, Zhang Y. 2020 Nov. A computerized method for automatic detection of schizophrenia using EEG signals. IEEE Trans Neural Syst Rehabil Eng. 28(11):2390–2400. doi:10.1109/TNSRE.2020.3022715
  • Siuly S, Li Y. 2012 Jul. Improving the separability of motor imagery EEG signals using a cross correlation-based least square support vector machine for brain–computer interface. IEEE Trans Neural Syst Rehabil Eng. 20(4):526–538. doi:10.1109/TNSRE.2012.2184838
  • Siuly S, Li Y. 2015 May. Discriminating the brain activities for brain–computer interface applications through the optimal allocation-based approach. Neural Comput Appl. 26(4):799–811. doi:10.1007/s00521-014-1753-3
  • Siuly NA, Li Y, Wen P. 2013. Identification of motor imagery tasks through CC-LR algorithm in brain computer interface. Int J Bioinform Res Appl. 9(2):156. doi: 10.1504/IJBRA.2013.052447.
  • Siuly Y, Li, Wen P(. 2011 Dec. Clustering technique-based least square support vector machine for EEG signal classification. Comput Methods Programs Biomed. 104(3):358–372. doi:10.1016/j.cmpb.2010.11.014
  • Siuly Y, Li, Wen P(. 2014 Mar. Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain–computer interface. Comput Methods Programs Biomed. 113(3):767–780. doi:10.1016/j.cmpb.2013.12.020
  • Siuly HW, Zhang Y. 2016 May. Detection of motor imagery EEG signals employing Naïve Bayes based learning process. Measurement. 86:148–158. doi:10.1016/j.measurement.2016.02.059.
  • Soliman S, Fouad AM, Mourad E, Hossam S, Ehab M, Selim S, Darweesh MS. 2022 Nov. Deep learning approaches for epileptic seizure prediction: a review. Institute of Electrical and Electronics Engineers (IEEE). pp. 01–06. 10.1109/niles56402.2022.9942420.
  • Subasi A. 2019 Jan. Feature extraction and dimension reduction. Practical Guide For Biomedical Signals Analysis Using Machine Learning Techniques. 193–275. 10.1016/B978-0-12-817444-9.00004-0
  • Sui J et al., “Combination of FMRI-SMRI-EEG data improves discrimination of schizophrenia patients by ensemble feature selection,” in 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, Aug. 2014, pp. 3889–3892. doi: 10.1109/EMBC.2014.6944473.
  • Taran S, Bajaj V. 2018 Nov. Drowsiness detection using adaptive hermite decomposition and extreme learning machine for electroencephalogram signals. IEEE Sens J. 18(21):8855–8862. doi:10.1109/JSEN.2018.2869775
  • Taran S, Bajaj V. 2019a May. Emotion recognition from single-channel EEG signals using a two-stage correlation and instantaneous frequency-based filtering method. Comput Methods Programs Biomed. 173:157–165. DOI:10.1016/j.cmpb.2019.03.015.
  • Taran S, Bajaj V. 2019b Nov. Motor imagery tasks-based EEG signals classification using tunable-Q wavelet transform. Neural Comput Appl. 31(11):6925–6932. doi:10.1007/s00521-018-3531-0
  • Taran S, Bajaj V, Sharma D. 2017a Aug. Robust hermite decomposition algorithm for classification of sleep apnea EEG signals. Electron Lett. 53(17):1182–1184. doi:10.1049/el.2017.1365
  • Taran S, Bajaj V, Sharma D. 2017b November. TEO separated AM-FM components for identification of apnea EEG signals. Undefined. 2017:391–395. DOI:10.1109/SIPROCESS.2017.8124571.
  • Taran S, Bajaj V, Sharma D, Siuly S, Sengur A. 2018 Feb. Features based on analytic IMF for classifying motor imagery EEG signals in BCI applications. Measurement. 116:68–76. DOI:10.1016/j.measurement.2017.10.067.
  • Taran S, Bajaj V, Sinha GR, Polat K. 2021 Oct. Detection of sleep apnea events using electroencephalogram signals. Appl Acoust. 181:108137. DOI:10.1016/j.apacoust.2021.108137.
  • Tripathy RK, Rajendra Acharya U. 2018. Use of features from RR-time series and EEG signals for automated classification of sleep stages in deep neural network framework. Biocybern Biomed Eng. 38(4):890–902. doi: 10.1016/j.bbe.2018.05.005.
  • Tuncer T, Dogan S, Acharya UR. 2020 Jan. Automated detection of Parkinson’s disease using minimum average maximum tree and singular value decomposition method with vowels. Biocybern Biomed Eng. 40(1):211–220. 10.1016/j.bbe.2019.05.006
  • Verma NK, Rao LSVS, and Sharma SK, “Motor imagery EEG signal classification on DWT and crosscorrelated signal features,” in 2014 9th International Conference on Industrial and Information Systems (ICIIS), IEEE, Dec. 2014, pp. 1–6. doi: 10.1109/ICIINFS.2014.7036473.
  • Vishwakarma SK, Sharma PC, Raja R, Roy V, Tomar S. 2020 Oct. An effective cascaded approach for eeg artifacts elimination. International Journal Of Pharmaceutical Research. 12(4):4822–4828. doi:10.31838/IJPR/2020.12.04.653
  • Wang XW, Nie D, Lu BL. 2011. EEG-based emotion recognition using frequency domain features and support vector machines. Lecture Notes In Comp Sci (Including Subseries Lecture Notes In Arti Inte & Lecture Notes In Bioinfo). 7062(PART 1):734–743. doi: 10.1007/978-3-642-24955-6_87/COVER.
  • Xu S, Wang Z, Sun J, Zhang Z, Wu Z, Yang T, Xue G, Cheng C. 2020 Jul. Using a deep recurrent neural network with EEG signal to detect Parkinson’s disease. Ann Transl Med. 8(14):874–874. doi: 10.21037/atm-20-5100.
  • Yaacob H, Hossain F, Shari S, Khare SK, Ooi CP, Acharya UR. 2023. Application of artificial intelligence techniques for brain-computer interface in mental fatigue detection: a systematic review (2011-2022). IEEE Acces. 11:74736–74758. doi: 10.1109/ACCESS.2023.3296382.
  • Yu X, Aziz MZ, Sadiq MT, Fan Z, Xiao G. 2021. A new framework for automatic detection of motor and mental imagery EEG signals for robust BCI systems. IEEE Trans Instrum Meas. 70:1–12. doi: 10.1109/TIM.2021.3069026.
  • Zhang L, “EEG signals classification using machine learning for the identification and diagnosis of schizophrenia,” in 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, Jul. 2019, pp. 4521–4524. doi: 10.1109/EMBC.2019.8857946.
  • Zhang R, Xu P, Guo L, Zhang Y, Li P, Yao D, Xiong M. 2013 Sep. Z-Score linear discriminant analysis for EEG based brain-computer interfaces. PloS ONE. 8(9):e74433. 10.1371/journal.pone.0074433
  • Zhou J, Wu X, Zeng W. 2015 Dec. Automatic detection of sleep apnea based on EEG detrended fluctuation analysis and support vector machine. J Clin Monit Comput. 29(6):767–772. doi:10.1007/s10877-015-9664-0