416
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A Multi-View Semi-supervised learning method for knee joint cartilage segmentation combining multiple feature descriptors and image modalities

, , &
Article: 2332398 | Received 03 Oct 2023, Accepted 11 Mar 2024, Published online: 05 Apr 2024

References

  • Ambellan F, Tack A, Ehlke M, Zachow S. 2019. Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: data from the osteoarthritis initiative. Med Image Anal. 52:109–23. doi: 10.1016/j.media.2018.11.009.
  • Badrinarayanan V, Kendall A, Cipolla R. 2017. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. Ieee T Pattern Anal. 39(12):2481–2495. arXiv:1511.00561. doi: 10.1109/TPAMI.2016.2644615.
  • Banerjee J, Moelker A, Niessen WJ, Van Walsum T. 2013. 3D LBP-based rotationally invariant region description Lecture Notes In Computer Science (Including Subseries Lecture Notes In Artificial Intelligence And Lecture Notes In Bioinformatics) 7728 LNCS (PART 1). 26–37. doi: 10.1007/978-3-642-37410-4_3.
  • Belkin M, Niyogi P. 2005. Towards a theoretical foundation for Laplacian-based manifold methods Lecture Notes In Computer Science (Including Subseries Lecture Notes In Artificial Intelligence And Lecture Notes In Bioinformatics) 3559 LNAI. 486–500. doi: 10.1007/11503415_33.
  • Belkin M, Niyogi P, Sindhwani V. 2006. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res. 7(2006):2399–2434.
  • Biscaldi E, Barra F, Evangelisti G, Ferrero S. 2018. Radiological assessment, endometrial cancer: risk factors. Management And Prognosis. 3:113–144. doi: 10.2307/3578513.
  • Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. 2010. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn. 3(1):1–122. doi: 10.1561/2200000016.
  • Buades A, Coll B, Morel J-M. 2011. Non-local means denoising. Image Processing On Line. 1:208–212. doi: 10.5201/ipol.2011.bcm_nlm.
  • Chadoulos C, Moustakidis S, Tsaopoulos D, Theocharis J, Multi-atlas segmentation of knee cartilage by propagating labels via semi-supervised learning, ACM International Conference Proceeding Series (2022) 76–82 doi:10.1145/3524086.3524098.
  • Chen H, Dou Q, Yu L, Heng P-A, VoxResNet: Deep Voxelwise Residual Networks for Volumetric Brain Segmentation (2016) 1–9 arXiv: 1608.05895. http://arxiv.org/abs/1608.05895
  • Dai W, Woo B, Liu S, Marques M, Tang F, Crozier S, Engstrom C, Chandra S, Can3d: Fast 3D knee mri segmentation via compact context aggregation, Proceedings - International Symposium on Biomedical Imaging 2021-April (2021) 1505–1508. arXiv:arXiv:2109.05443v2, doi:10.1109/ISBI48211.2021.9433784.
  • Ebrahimkhani S, Jaward MH, Cicuttini FM, Dharmaratne A, Wang Y, de Herrera AG. 2020. A review on segmentation of knee articular cartilage: from conventional methods towards deep learning. Artif Intell Med. 106(January 2019):101851. doi: 10.1016/j.artmed.2020.101851.
  • Felipe J, McCombie J. 2002. Burden of major musculoskeletal conditions. ERD Working Paper Series. 81(19):1–27.
  • Felson DT. 2000. NIH Conference Osteoarthritis: new insights. Ann Intern Med. 133(8):635–639. http://www.annals.org/content/133/8/635.short.
  • Folkesson J, Dam EB, Olsen OF, Pettersen PC, Christiansen C. 2007. Segmenting articular cartilage automatically using a voxel classification approach. IEEE Trans Med Imaging. 26(1):106–115. doi: 10.1109/TMI.2006.886808.
  • Friedman M. 1937. The use of ranks to avoid the Assumption of Normality Implicit in the analysis of variance. J Am Stat Assoc. 32(200):675–701. doi: 10.1080/01621459.1937.10503522.
  • Galloway MM. 1975. Texture analysis using gray level run lengths. Comput Graph Image Process. 4(2):172–179. doi: 10.1016/s0146-664x(75)80008-6.
  • Glyn-Jones S, Palmer AJ, Agricola R, Price AJ, Vincent TL, Weinans H, Carr AJ. 2015. Osteoarthritis. Lancet. 386(9991):376–387. doi: 10.1016/S0140-6736(14)60802-3.
  • Guo Z, Li X, Huang H, Guo N, Li Q. 2019. Deep learning-based image segmentation on multimodal medical imaging. IEEE Trans Radiat Plasma Med Sci. 3(2):162–169. doi: 10.1109/TRPMS.2018.2890359.
  • Hajnal JV, Hill DL, Hawkes DJ. 2001. Medical image registration. Medical Image Registration. 46:1–383. doi: 10.1051/epn:2000401.
  • Haralick R, Shanmugam K, Dinstein I. 1973. Textural features for image classification. IEEE Trans Syst Man Cybern. SMC-3(6):610–621. doi: 10.1109/TSMC.1973.4309314.
  • Huang J, Nie F, Huang H. 2015. A new simplex sparse learning model to measure data similarity for clustering, IJCAI International Joint Conference on Artificial Intelligence 2015-Janua (Ijcai); July 25-31; Buenos Aires, Argentina. p. 3569–3575.
  • Karasuyama M, Mamitsuka H. 2013. Multiple graph label propagation by sparse integration. IEEE Trans Neural Netw Learn Syst. 24(12):1999–2012. doi: 10.1109/TNNLS.2013.2271327.
  • Kläser A, Marszałek M, Schmid C, A spatio-temporal descriptor based on 3D-gradients, BMVC 2008 - Proceedings of the British Machine Vision Conference 2008 (2008). doi:10.5244/C.22.99.
  • Liu F, Zhou Z, Jang H, Samsonov A, Zhao G, Kijowski R. 2018. Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging. Magn Reson Med. 79(4):2379–2391. doi: 10.1002/mrm.26841.
  • Luo X, Chen J, Song T, Wang G, Semi-supervised Medical image segmentation through dual-task consistency, 35th AAAI Conference on Artificial Intelligence, AAAI 2021 10A (2021) 8801–8809. arXiv:2009.04448, doi:10.1609/aaai.v35i10.17066.
  • Milletari F, Navab N, Ahmadi SA, V-Net: fully convolutional neural networks for volumetric medical image segmentation, Proceedings - 2016 4th International Conference on 3D Vision, 3DV 2016 (2016) 565–571 arXiv:1606.04797, doi:10.1109/3DV.2016.79.
  • Mohar B. 1991. The Laplacian Spectrum of Graphs. Graph Theory, Combinatorics and Applications. Wiley; p. 871–898.
  • Navneet D, Triggs B. 2020. Histogram of oriented gradients for human detection. IEEE Trans Ind Informat. 16(7):4714–4725. doi: 10.1109/TII.2019.2950094.
  • Nemenyi P, Distribution-free Multiple Comparisons, Ph.d. thesis, Princeton University (1963).
  • Nie F, Tian L, Wang R, Li X. 2020. Multiview semi-supervised learning model for image classification. IEEE Trans Knowl Data Eng. 32(12):2389–2400. doi: 10.1109/TKDE.2019.2920985.
  • Nikolopoulos FP, Zacharaki EI, Stanev D, Moustakas K. 2020. Personalized knee geometry modeling based on multi-atlas segmentation and mesh refinement. IEEE Access. 8:56766–56781. doi: 10.1109/ACCESS.2020.2982061.
  • Norman B, Pedoia V, Majumdar S. 2018. Use of 2D U-net convolutional neural networks for automated cartilage and meniscus segmentation of knee MR imaging data to determine relaxometry and morphometry. Radiology. 288(1):177–185. doi: 10.1148/radiol.2018172322.
  • Nyul LG, Udupa JK. 2000. Standardizing the MR image intensity scales: making MR intensities have tissue specific meaning, medical imaging 2000. Image Display And Visualization. 3976:496–504.
  • Ojala T, Pietikäinen M, Harwood D. 1996. A comparative study of texture measures with classification based on feature distributions. Pattern Recogn. 29(1):51–59. doi: 10.1016/0031-3203(95)00067-4.
  • Öztürk CN, Albayrak S. 2016. Automatic segmentation of cartilage in high-field magnetic resonance images of the knee joint with an improved voxel-classification-driven region-growing algorithm using vicinity-correlated subsampling. Comput Biol Med. 72:90–107. doi: 10.1016/j.compbiomed.2016.03.011.
  • Pakin SK, Tamez-Pena JG, Totterman S, Parker KJ. 2002. Segmentation, surface extraction, and thickness computation of articular cartilage, medical imaging 2002. Image Processing. 4684:155. doi: 10.1117/12.467113.
  • Peng Y, Zheng H, Liang P, Zhang L, Zaman F, Wu X, Sonka M, Chen DZ. 2022. KCB-Net: a 3D knee cartilage and bone segmentation network via sparse annotation. Med Image Anal. 82(August):102574. doi: 10.1016/j.media.2022.102574.
  • Peterfy CG, Schneider E, Nevitt M. 2008. The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthritis Cartilage. 16(12):1433–1441. doi: 10.1016/j.joca.2008.06.016.
  • Prasoon A, Petersen K, Igel C, Lauze F, Dam E, Nielsen M. 2013. Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. Lecture Notes In Computer Science (Including Subseries Lecture Notes In Artificial Intelligence And Lecture Notes In Bioinformatics) 8150 LNCS (PART 2). 246–253. doi: 10.1007/978-3-642-40763-5_31.
  • Rister B, Horowitz MA, Rubin DL. 2017. Volumetric image registration from invariant keypoints. IEEE Trans Image Process. 26(10):4900–4910. doi: 10.1109/TIP.2017.2722689.
  • Rousseau F, Habas PA, Studholme C. 2011. A supervised patch-based approach for human brain labeling. IEEE Trans Med Imaging. 30(10):1852–1862. doi: 10.1109/TMI.2011.2156806.
  • Sarwinda D, Bustamam A, 3D-HOG features-based classification using MRI images to early diagnosis of Alzheimer’s disease, Proceedings - 17th IEEE/ACIS International Conference on Computer and Information Science, ICIS 2018 (2018) 457–462 doi:10.1109/ICIS.2018.8466524.
  • Schneider E, NessAiver M, White D, Purdy D, Martin L, Fanella L, Davis D, Vignone M, Wu G, Gullapalli R. 2008. The osteoarthritis initiative (OAI) magnetic resonance imaging quality assurance methods and results. Osteoarthritis Cartilage. 16(9):994–1004. doi: 10.1016/j.joca.2008.02.010.
  • Sethian J. 1999. Advancing interfaces: level set and fast marching methods, in: level set methods and fast marching methods. 2nd. Cambridge Press. Ch. 16p. 12. http://www.math.berkeley.edu/sethian/2006/Papers/sethian.iciamproceedings.1999.pdf.
  • Simonyan K, Zisserman A. 2015. Very deep convolutional networks for large-scale image recognition, 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings; May 7 - 9, 2015; San Diego, CA, USA. p. 1–14.
  • Sled JG, Zijdenbos AP, Evans AC. 1998. A nonparametric method for automatic correction of intensity nonuniformity in mri data. IEEE Trans Med Imaging. 17(1):87–97. doi: 10.1109/42.668698.
  • Sun S. 2011. Multi-view Laplacian support vector machines Lecture notes In Computer Science (Including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) 7121 LNAI (PART 2). 209–222. doi: 10.1007/978-3-642-25856-5_16.
  • Sun S. 2013. A survey of multi-view machine learning. Neural Comput Applic. 23(7–8):2031–2038. doi: 10.1007/s00521-013-1362-6.
  • Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, Liang J. 2016. Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging. 35(5):1299–1312. arXiv:1706.00712. doi:10.1109/TMI.2016.2535302.
  • Tarvainen A, Valpola H. 2017. Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. Advances In Neural Information Processing Systems 2017-Decem. 30:1196–1205.
  • Wilcoxon F. 1946. Individual comparisons of grouped data by ranking methods. J Econ Entomol. 39(6):269. doi: 10.1093/jee/39.2.269.
  • Xie H, Pan Z, Zhou L, Zaman FA, Chen DZ, Jonas JB, Xu W, Wang YX, Wu X. 2022. Globally optimal OCT surface segmentation using a constrained IPM optimization. Opt Express. 30(2):2453. doi: 10.1364/oe.444369.
  • Yin Y, Zhang X, Williams R, Wu X, Anderson DD, Sonka M. 2010. LOGISMOS-layered optimal graph image segmentation of multiple objects and surfaces: cartilage segmentation in the knee joint. IEEE Trans Med Imaging. 29(12):2023–2037. doi: 10.1109/TMI.2010.2058861.
  • Yu L, Cheng JZ, Dou Q, Yang X, Chen H, Qin J, Heng PA. 2017. Automatic 3D cardiovascular MR segmentation with densely-connected volumetric convnets Lecture notes in Computer Science (Including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) 10434 LNCS. 287–295. arXiv:1708.00573. doi:10.1007/978-3-319-66185-8_33.
  • Yu L, Wang S, Li X, Fu CW, Heng PA. 2019. Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation lecture notes in Computer Science (Including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) 11765 LNCS. 605–613. arXiv:1907.07034. doi:10.1007/978-3-030-32245-8_67.
  • Zang F, Zhang JS. 2012. Label propagation through sparse neighborhood and its applications. Neurocomputing. 97:267–277. doi: 10.1016/j.neucom.2012.03.017.
  • Zhang D, Guo Q, Wu G, Shen D. 2012. Sparse patch-based label fusion for multi-atlas segmentation lecture notes in Computer Science (Including Subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) 7509 LNCS (Mv). 94–102. doi: 10.1007/978-3-642-33530-3_8.
  • Zhang X, Hu L, Zhang L. 2013. An efficient multiple kernel computation method for regression analysis of economic data. Neurocomputing. 118:58–64. doi: 10.1016/j.neucom.2013.02.013.
  • Zhang J, Marszałek M, Lazebnik S, Schmid C, Local features and kernels for classification of texture and object categories: a comprehensive study, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2006 (2006) 1–28. doi:10.1109/CVPRW.2006.121.
  • Zhang Z, Xu Y, Yang J, Li X, Zhang D. 2015. A survey of sparse representation: algorithms and applications. IEEE Access. 3:490–530. arXiv:1602.07017. doi: 10.1109/ACCESS.2015.2430359.
  • Zhang Y, Yang L, Chen J, Fredericksen M, Hughes DP, Chen DZ. 2017. Deep adversarial networks for biomedical image segmentation utilizing unannotated images lecture notes in Computer Science (Including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) 10435 LNCS. 408–416. doi: 10.1007/978-3-319-66179-7_47.
  • Zhao J, Xie X, Xu X, Sun S. 2017. Multi-view learning overview: recent progress and new challenges. Inf Fusion. 38:43–54. doi: 10.1016/j.inffus.2017.02.007.
  • Zhou Z, Zhao G, Kijowski R, Liu F. 2018. Deep convolutional neural network for segmentation of knee joint anatomy. Magn Reson Med. 80(6):2759–2770. doi: 10.1002/mrm.27229.
  • Zhu X, Lafferty J, Cs L, Edu CMU. 2003. Semi-Supervised learning using Gaussian fields and harmonic functions, AISTATS 2005 - Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics; August 21-24 2003; Washington, DC, USA.