397
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Deep learning-based CNN for multiclassification of ocular diseases using transfer learning

&
Article: 2335959 | Received 04 Dec 2023, Accepted 24 Mar 2024, Published online: 04 Apr 2024

References

  • Abbas Q, Qureshi I, Yan J, Shaheed K. 2022. Machine learning methods for diagnosis of eye‑related diseases: a systematic review study based on ophthalmic imaging modalities. Arch Computat Methods Eng. 29(6):3861–13. doi: 10.1007/s11831-022-09720-z.
  • Abu-Ein AA, Tahat NM, Al-Smadi MM, Al-Nawashi MM, Al-Nawashi M. 2022 Dec 2. Combining artificial intelligence and image processing for diagnosing diabetic retinopathy in retinal fundus images. Int J Onl Eng. 18(13):131–151. doi: 10.3991/ijoe.v18i13.33985.
  • Acharya RU, Yu W, Zhu K, Nayak J, Lim T-C, Chan JY. 2010. Identification of cataract and post-cataract surgery optical images using artificial intelligence techniques. J Med Syst. 34(4):619–628. doi: 10.1007/s10916-009-9275-8.
  • Ahn JM, Kim S, Ahn K-S, Cho S-H, Lee KB, Kim US, Bhattacharya S. 2018. A deep learning model for the detection of both advanced and early glaucoma using fundus photography. PLoS One. 13(11):0207982. doi: 10.1371/journal.pone.0207982.
  • Alzubaidi L, Fadhel MA, Al-Shamma O, Zhang J, Santamaría J, Duan Y, Oleiwi SR. 2020. Towards a better understanding of transfer learning for medical imaging: a case study. Appl Sci. 10(13):4523. doi: 10.3390/app10134523.
  • An G, Omodaka K, Hashimoto K, Tsuda S, Shiga Y, Takada N, Kikawa T, Yokota H, Akiba M, Nakazawa T. 2019. Glaucoma diagnosis with machine learning based on optical coherence tomography and color fundus images. J Healthc Eng. 2019:1–9. doi: 10.1155/2019/4061313.
  • Asaoka R, Tanito M, Shibata N, Mitsuhashi K, Nakahara K, Fujino Y, Kiuchi Y. 2019. Validation of a deep learning model to screen for glaucoma using images from different fundus cameras and data augmentation. Ophthalmol Glaucoma. 2(4):224–231. doi: 10.1016/j.ogla.2019.03.008.
  • Barros DM, Moura JC, Freire CR, Taleb AC, Valentim RA, Morais PS. 2020. Machine learning applied to retinal image processing for glaucoma detection: review and perspective. Biomed Eng Online. 19(1):1–21. doi: 10.1186/s12938-020-00767-2.
  • Benet D, Pellicer-Valero OJ. 2021. Artificial intelligence: the unstoppable revolution in ophthalmology. Surv Ophthalmol. 67(1):252–270. doi: 10.1016/j.survophthal.2021.03.003.
  • Bhat SK, Deepak GD. 2024. Predictive modelling and optimization of double ring electrode based cold plasma using artificial neural network. Int J Eng. 37(1):83–93. doi: 10.5829/IJE.2024.37.01A.08.
  • Bishop CM. 2006. Pattern recognition and machine learning. New York, NY: Springer.
  • Bustos A, Pertusa A, Salinas J-M, de la Iglesia-Vayá M. 2020. PadChest: a large chest X-ray image dataset with multi-label annotated reports. Med Image Anal. 66:101797. doi: 10.1016/j.media.2020.101797.
  • Chakraborty C, Kishor A. 2022 Dec. Real-time cloud-based patient-centric monitoring using computational health systems. IEEE Trans Comput Social Syst. 9(6):1613–1623. doi:10.1109/TCSS.2022.3170375
  • Chen X, Xu Y, Wong DWK, Wong TY, Liu J. 2015. Glaucoma detection based on deep convolutional neural network. In: 2015 37th Annual international conference of the IEEE engineering in medicine and biology society (EMBC); Milan, Italy. p. 715–718.
  • Deepak GD, Bhat SK. 2023a. Optimization of deep neural networks for multiclassification of dental X-rays using transfer learning. Comput Meth Biomech Biomed Eng Imaging Vis. 1–20. Online. doi: 10.1080/21681163.2023.2272976.
  • Deepak GD, Bhat SK. 2023b. Predictive modeling and optimization of pin electrode based cold plasma using machine learning approach. Multiscale and Multidiscip Model Exp Des. doi: 10.1007/s41939-023-00321-2.
  • Diaz-Pinto A, Morales S, Naranjo V, Köhler T, Mossi JM, Navea A. 2019. Cnns for automatic glaucoma assessment using fundus images: an extensive validation. Biomed Eng Online. 18(1):1–19. doi: 10.1186/s12938-019-0649-y.
  • Divya L, Jacob J. 2018. Performance analysis of glaucoma detection approaches from fundus images. Proc Comput Sci. 143:544–551. doi: 10.1016/j.procs.2018.10.429.
  • Gao X, Lin S, Wong TY. 2015. Automatic feature learning to grade nuclear cataracts based on deep learning. IEEE Trans Biomed Eng. 62(11):2693–2701. doi: 10.1109/TBME.2015.2444389.
  • Gharaibeh N, Abu-Ein A, Nahar KM. 2021. A hybrid SVM NAÏVE-BAYES Classifier for bright lesions recognition in eye fundus images. Int J Electr Eng Inform. 13(3):530–545.
  • Gharaibeh N, Abu-Ein AA, Nahar KM, Abu-Ain WA, Al-Nawashi MM. 2023. Swin transformer-based segmentation and multi-scale feature pyramid fusion module for Alzheimer’s disease with machine learning. Int J Online Biomed Eng. 19(4):22–50.
  • Gharaibeh N, Al-Naami B, Nahar KM. 2018. An effective image processing method for detection of diabetic retinopathy diseases from retinal fundus images. Int J Signal Imag Syst Eng. 11(4):206–216.
  • Guergueb T, Akhloufi MA. 2023. A review of deep learning techniques for glaucoma detection. SN Comput Sci. 4(3):274. doi: 10.1007/s42979-023-01734-z.
  • Gupta J, Pathak S, Kumar G. 2022. Deep learning (CNN) and transfer learning: a review. J Phys Conf Ser. 2273(1):012029. doi: 10.1088/1742-6596/2273/1/012029.
  • He Z, Jia D, Zhang C, Li Z, Wu N. 2024. An automatic Darknet-based immunohistochemical scoring system for IL-24 in lung cancer. Eng Appl Artif Intell. 128:107485.
  • He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition. In IEEE conference on computer vision and pattern Recognitio; Jun 770778; New York, NY, USA: IEEE.
  • Hridoy RH, Akter F, Mahfuzullah M, Ferdowsy F. 2021. A computer vision-based food recognition approach for controlling. In 2021 International Conference on Information Technology (ICIT); Amman, Jordan.
  • Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K. 2016. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size. arXiv, arXiv: 1602 07360. 1–17.
  • Ioffe S, Szegedy C. 2015. Batch normalization accelerating deep network training by reducing internal covariate shift. In Proceedings International Conference on Machine Learning; 448456; Heidelberg, Germany: Springer.
  • Kim D, Jun TJ, Eom Y, Kim C, Kim D. 2019. Tournament based ranking CNN for the cataract grading. Proceeding Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Berlin, Germany. p. 1630–1636.
  • Kingma D, Ba J. 2014. Adam: a method for stochastic optimization. arXiv preprint arXiv:14126980. 1–15.
  • Kumar Y, Gupta S. 2023. Deep transfer learning approaches to predict glaucoma, cataract, choroidal neovascularization, diabetic macular edema, DRUSEN and Healthy Eyes: an experimental review. Arch Computat Methods Eng. 30(1):521–541. doi: 10.1007/s11831-022-09807-7.
  • Li W, Gu C, Chen J, Ma C, Zhang X, Chen B, Wan S. DLS-GAN: generative adversarial nets for defect location sensitive data augmentation. IEEE Trans Autom Sci Eng. doi: 10.1109/TASE.2023.3309629
  • Li W, Liu X, Liu J, Chen P, Wan S, Cui X. 2019. On improving the accuracy with auto-encoder on conjunctivitis. Appl Soft Comput. 81:105489.
  • Li T, Bo W, Hu C, Kang H, Liu H, Wang K, Fu H. 2021. Applications of deep learning in fundus images: a review. Med Image Anal. 69:101971. doi: 10.1016/j.media.2021.101971.
  • Lu H, Jin T, Wei H, Nappi M, Li H, Wan S. 2024. Soft-orthogonal constrained dual-stream encoder with self-supervised clustering network for brain functional connectivity data. Expert Syst Appl. 244:122898.
  • Maheshwari S, Kanhangad V, Pachori RB. 2020. CNN-based approach for glaucoma diagnosis using transfer learning and LBP-based data augmentation. arXiv Preprint. http://arxiv.org/abs/2002.08013.
  • Morid MA, Borjali A, Fiol GD. 2021. A scoping review of transfer learning research on medical image analysis using ImageNet. Comput Biol Med. 128:104115. doi: 10.1016/j.compbiomed.2020.104115.
  • Pal P, Kundu S, Kumar Dhara A. 2020. Detection of red lesions in retinal fundus images using YOLO V3. Curr Indian Eye Res J Ophthalmic Res Group. 7:49.
  • Pandey AK, Singh SP, Chakraborty C. 2023. Retinal image preprocessing techniques: acquisition and cleaning perspective. Internet Technol Lett. e437. doi: 10.1002/itl2.437.
  • Phan S, Satoh S, Yoda Y, Kashiwagi K, Oshika T. 2019. Evaluation of deep convolutional neural networks for glaucoma detection. Jpn J Ophthalmol. 63(3):276–283. doi: 10.1007/s10384-019-00659-6.
  • Prokofyeva E, Wegener A, Zrenner E. 2013. Cataract prevalence and prevention in Europe: a literature review. Acta Ophthalmol. 91(5):395–405. doi: 10.1111/j.1755-3768.2012.02444.x.
  • Robinson B. 2001. Prevalence of asymptomatic eye disease in an optometric population. Optom Vis Sci. 78(12):250. doi: 10.1097/00006324-200112001-00395.
  • Salehi AW, Khan S, Gupta G, Alabduallah BI, Almjally A, Alsolai H, Siddiqui T, Mellit A. 2023. A study of CNN and transfer learning in medical imaging: advantages, challenges, future scope. Sustainability. 15(7):5930. doi: 10.3390/su15075930.
  • Sarki R, Ahmed K, Wang H, Zhang Y. 2020. Automatic detection of diabetic eye disease through deep learning using fundus images: a survey. IEEE Access. 8:151133–151149. doi: 10.1109/ACCESS.2020.3015258.
  • Soekhoe D, van der Putten P, Plaat A. 2016. On the impact of data set size in transfer learning using deep neural networks. In: Boström H, Knobbe A, Soares C Papapetrou P, editors. Advances in intelligent data analysis XV. IDA 2016. Lecture notes in computer science. Vol. 9897. Cham: Springer. doi: 10.1007/978-3-319-46349-0_5.
  • Tan M, Le Q. 2019. EfficientNet: rethinking model scaling for convolutional neural networks. arXiv, arXiv: 1905 11946. 1–11.
  • Taylor M, Liu X, Denniston A, Esteva A, Ko J, Daneshjou R, Chan A-W. 2021. Raising the bar for randomized trials involving artificial intelligence: the SPIRIT-AI and CONSORT-AI guidelines. J Invest Dermatol. 141(9):2109–2111. doi: 10.1016/j.jid.2021.02.744.
  • Tham YC, Anees A, Zhang L, Goh JHL, Rim TH, Nusinovici S, Hamzah H, Chee M-L, Tjio G, Li S, et al. 2021. Referral for disease-related visual impairment using retinal photograph-based deep learning: a proof-of-concept, model development study. Lancet Digit Heal. 3(1):e29–40. doi:10.1016/S2589-7500(20)30271-5.
  • Tham Y-C, Li X, Wong TY, Quigley HA, Aung T, Cheng C-Y. 2014. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 121(11):2081–2090. doi: 10.1016/j.ophtha.2014.05.013.
  • Thanh THP, Thuy TPT, Hieu TN and Nguyen MS. 2020. “A real-time classification of glaucoma from retinal fundus images using AI technology”. 2020 International Conference on Advanced Computing and Applications (ACOMP); 114–121; Quy Nhon, Vietnam. doi: 10.1109/ACOMP50827.2020.00024.
  • Tognetto D, Giglo R, Vinciguerra AL, Milan S, Rejdak R, Rejdak M, Zaluska-Ogryzek K, Zweifel S, Toro MD. 2022. Artificial intelligence applications and cataract management: a systematic review. Surv Opthalmol. 67(3):817–829. doi: 10.1016/j.survophthal.2021.09.004.
  • Tong Y, Lu W, Yu Y, Shen Y. 2020. Application of machine learning in ophthalmic imaging modalities. Eye and Vis. 7(1):1–15. doi: 10.1186/s40662-020-00183-6.
  • Transfer learning and its application in computer vision: a review, Chandeep Sharma, Sayonee Parikh, Conference: Transfer Learning and its application in Computer Vision. 2022 Mar. Waterloo, Canada.
  • Wang H, Zhang D, Feng J, Cascone L, Nappi M, Wan S. 2024. A multi-objective segmentation method for chest X-rays based on collaborative learning from multiple partially annotated datasets. Inf Fusion. 102:102016.
  • Wang SH, Nayak DR, Guttery DS, Zhang X, Zhang YD. 2021. COVID-19 classification by CCSHNet with deep fusion using transfer learning and discriminant correlation analysis. Inf Fusion. 68:131–148. doi: 10.1016/j.inffus.2020.11.005.
  • World report on vision, World Health Organization. 2019. https://www.who.int/publications/i/item/9789241516570. Accessed on 10 Nov 2023.
  • Zangalli C, Gupta SR, Spaeth GL. 2011. The disc as the basis of treatment for glaucoma. Saudi J Ophthalmol. 25(4):381–387. doi: 10.1016/j.sjopt.2011.07.003.
  • Zhang Y, Khan MA, Zhu Z, Wang S. 2023. Snelm: squeezenet-guided elm for COVID-19 recognition. Comput Syst Sci Eng. 46(1):13–26. doi: 10.32604/csse.2023.034172.