137
Views
0
CrossRef citations to date
0
Altmetric
Articles

Truncation Based Approximate Multiplier For Error Resilient Applications

, &
Pages 296-307 | Received 28 Jun 2020, Accepted 29 Mar 2021, Published online: 19 Apr 2021

References

  • Ansari, M. S., Jiang, H., Cockburn, B. F., & Han, J. (2018). Low-power approximate multipliers using encoded partial products and approximate compressors. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 8(3), 404–416. https://doi.org/10.1109/jetcas.2018.2832204
  • Ceska, M., Matyas, J., Mrazek, V., Sekanina, L., Vasicek, Z., & Vojnar, T. (2017). Approximating complex arithmetic circuits with formal error guarantees: 32-bit multipliers accomplished. 2017 IEEE/ACM International Conference On Computer-Aided Design (ICCAD), Irvine, California, USA. https://doi.org/10.1109/iccad.2017.8203807
  • Esposito, D., Strollo, A. G. M., Napoli, E., Caro, D. D., & Petra, N. (2018). Approximate multipliers based on new approximate compressors. IEEE Transactions on Circuits and Systems I: Regular Papers, 65(12), 4169–4182. https://doi.org/10.1109/tcsi.2018.2839266
  • Garg, B., & Sharma, G. (2016). A quality-aware energy-scalable gaussian smoothing filter for image processing applications. Microprocessors And Microsystems, 45(Part A), 1–9. https://doi.org/10.1016/j.micpro.2016.02.012
  • Gnanasekaran, G. (1985). A Fast Serial-Parallel Binary Multiplier. IEEE Transactions On Computers, C-34(8), 741–744. https://doi.org/10.1109/TC.1985.1676620
  • Gupta, V., Mohapatra, D., Raghunathan, A., & Roy, K. (2013). Low-power digital signal processing using approximate adders. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 32(1), 124–137. https://doi.org/10.1109/TCAD.2012.2217962
  • Hashemi, S., Bahar, R. I., & Reda, S. (2015). DRUM: A dynamic range unbiased multiplier for approximate applications. 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Austin, Texas, USA. https://doi.org/10.1109/iccad.2015.7372600
  • Hoefflinger, B. (2011). ITRS: The International Technology Roadmap for Semiconductors. The Frontiers Collection, 161–174. Springer, Berlin. https://doi.org/10.1007/978-3-642-23096-7_7
  • Jiang, H., Han, J., Qiao, F., & Lombardi, F. (2016). Approximate radix-8 booth multipliers for low-power and high-performance operation. IEEE Transactions on Computers, 65(8), 2638–2644. https://doi.org/10.1109/TC.2015.2493547
  • Kahng, A., & Kang, S. (2012). Accuracy-configurable adder for approximate arithmetic designs. Proceedings Of The 49Th Annual Design Automation Conference On - DAC ‘12, San Fransicso, California, USA. https://doi.org/10.1145/2228360.2228509
  • Maheshwari, N., Yang, Z., Han, J., & Lombardi, F. (2015). A design approach for compressor based approximate multipliers. 2015 28th International Conference on VLSI Design, Bangalore, Karnataka, India. https://doi.org/10.1109/vlsid.2015.41
  • Masadeh, M., Hasan, O., & Tahar, S. (2019). Input-conscious approximate multiply-accumulate (MAC) Unit for Energy-Efficiency. IEEE Access, 7,147129–147142. https://doi.org/10.1109/access.2019.2946513
  • Mazahir, S., Hasan, O., Hafiz, R., Shafique, M., & Henkel, J. (2016). An area-efficient consolidated configurable error correction for approximate hardware accelerators. Proceedings of the 53rd Annual Design Automation Conference on - DAC ‘16, Austion, Texas, USA. https://doi.org/10.1145/2897937.2897981
  • Momeni, A., Han, J., Montuschi, P., & Lombardi, F. (2015). Design and analysis of approximate compressors for multiplication. IEEE Transactions on Computers, 64(4), 984–994. https://doi.org/10.1109/tc.2014.2308214
  • Popkin, T., Cavallaro, A., & Hands, D. (2010). Accurate and efficient method for smoothly space-variant gaussian blurring. IEEE Transactions On Image Processing, 19(5), 1362–1370. https://doi.org/10.1109/tip.2010.2041400
  • Reddy, K., Nithin Kumar, Y., Sharma, D., & Vasantha, M. (2015). Low power, high speed error tolerant multiplier using approximate adders. 2015 19Th International Symposium On VLSI Design And Test, Ahmedabad, Gujarat, India. https://doi.org/10.1109/isvdat.2015.7208150
  • Shafique, M., Hafiz, R., Rehman, S., El-Harouni, W., & Henkel, J. (2016). Invited - Cross-layer approximate computing: From logic to architectures. Proceedings of the 53rd Annual Design Automation Conference on - DAC ‘16, Austin, Texas, USA. https://doi.org/10.1145/2897937.2906199
  • Smith, T., Marks, W., Lange, G., Sheriff, W., & Neale, E. (1988). Edge Detection in Images Using Marr-Hildreth Filtering Techniques. Journal of Neuroscience Methods. 26(1), 75–81. https://doi.org/10.1016/0165-0270(88)90130-6
  • Swartzlander, E. (1999). Truncated multiplication with approximate rounding. Conference Record of the Thirty-Third Asilomar Conference on Signals, Systems, and Computers (Cat. No.CH37020), Pacific Grove, California, USA. https://doi.org/10.1109/acssc.1999.831996
  • Unser, M., & Eden, M. (1989). Multiresolution feature extraction and selection for texture segmentation. IEEE Transactions On Pattern Analysis And Machine Intelligence, 11(7), 717–728. https://doi.org/10.1109/34.192466
  • Vasicek, Z., & Sekanina, L. (2015). Evolutionary approach to approximate digital circuits design. IEEE Transactions On Evolutionary Computation, 19(3), 432–444. https://doi.org/10.1109/tevc.2014.2336175
  • Ye, R., Wang, T., Yuan, F., Kumar, R., & Xu, Q. (2013). On reconfiguration-oriented approximate adder design and its application. 2013 IEEE/ACM International Conference On Computer-Aided Design (ICCAD), San Jose, California, USA. https://doi.org/10.1109/iccad.2013.6691096
  • Zhu, N., Goh, W. L., Wang, G., & Yeo, K. S. (2010). Enhanced low-power high-speed adder for error-tolerant application. 2010 International SoC Design Conference, Incheon, South Korea. https://doi.org/10.1109/socdc.2010.5682905

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.