2,160
Views
0
CrossRef citations to date
0
Altmetric
Articles

Factors influencing stone-free rate of Extracorporeal Shock Wave Lithotripsy (ESWL); a cohort study

, , , , , & ORCID Icon show all
Pages 237-243 | Received 29 Oct 2021, Accepted 14 Mar 2022, Published online: 09 Apr 2022

References

  • Brown J. Diagnostic and treatment patterns for renal colic in US emergency departments. Int Urol Nephrol. 2006;38(1):87–92.
  • Cupisti A, Pasquali E, Lusso S, et al. Renal colic in Pisa emergency department: epidemiology, diagnostics and treatment patterns. Intern Emerg Med. 2008;3(3):241–244.
  • Türk (Chair) An C, Petřík A, Seitz C, et al. Gambaro (Consultant nephrologist), Guidelines Associates: N.F. Davis JFD, R. Lombardo, L. Tzelves. EAU Guidelines on Urolithiasis 2021. Available from: https://uroweb.org/guideline/urolithiasis/.
  • Zumstein V, Betschart P, Abt D, et al. Surgical management of urolithiasis – a systematic analysis of available guidelines. BMC Urol. 2018;18(1):25.
  • NICE Guideline – Renal and ureteric stones: assessment and management: NICE (2019) Renal and ureteric stones: assessment and management. BJU Int. 2019;123(2):220–232. Epub 2019/01/19.
  • El-Nahas AR, El-Assmy AM, Mansour O, et al. A prospective multivariate analysis of factors predicting stone disintegration by extracorporeal shock wave lithotripsy: the value of high-resolution noncontrast computed tomography. European Urology. 2007;51(6):1688–1693; discussion 93-4.
  • Hirsch B, Abt D, Gusewell S, et al. Outcome groups and a practical tool to predict success of shock wave lithotripsy in daily clinical routine. World J Urol. 2021;39(3):943–951.
  • Assimos D, Krambeck A, Miller NL, et al. Surgical management of stones: American urological association/endourological society guideline, PART I . J Urol. 2016;196(4):1153–1160.
  • Türk CN, Petrik A, Seitz C, et al. EAU Guidelines on Urolithiasis 2020. European Association of Urology Guidelines 2019 Edition. 2020.
  • Lu Y, Tianyong F, Ping H, et al. Antibiotic prophylaxis for shock wave lithotripsy in patients with sterile urine before treatment may be unnecessary: a systematic review and Meta-analysis. J Urol. 2012;188(2):441–448.
  • Jendeberg J, Geijer H, Alshamari M, et al. Size matters: the width and location of a ureteral stone accurately predict the chance of spontaneous passage. Eur Radiol. 2017;27(11):4775–4785.
  • Yallappa S, Amer T, Jones P, et al. Natural history of conservatively managed ureteral stones: analysis of 6600 patients. J Endourol. 2018;32(5):371–379. doi: https://doi.org/10.1089/end.2017.0848.
  • Ichiyanagi O, Nagaoka A, Izumi T, et al. Age-related delay in urinary stone clearance in elderly patients with solitary proximal ureteral calculi treated by extracorporeal shock wave lithotripsy. Urolithiasis. 2015;43(5):419–426.
  • Ng CF, Wong A, Tolley D. Is extracorporeal shock wave lithotripsy the preferred treatment option for elderly patients with urinary stone? A multivariate analysis of the effect of patient age on treatment outcome. BJU Int. 2007;100(2):392–395.
  • Ng CF. The effect of age on outcomes in patients undergoing treatment for renal nal stones. Curr Opin Urol. 2009;19(2):211–214.
  • Abdel-Khalek M, Sheir KZ, Mokhtar AA, et al. Prediction of success rate after extracorporeal shock-wave lithotripsy of renal stones-a multivariate analysis model. Scand J Urol Nephrol. 2004;38(2):161–167.
  • Abdel-Khalek M, Sheir K, Elsobky E, et al. Prognostic factors for extracorporeal shock-wave lithotripsy of ureteric stones-a multivariate analysis study. Scand J Urol Nephrol. 2003;37(5):413–418. Epub 2003/11/05.
  • Wiesenthal JD, Ghiculete D, Ray AA, et al. A clinical nomogram to predict the successful shock wave lithotripsy of renal and ureteral calculi. J Urol. 2011;186(2):556–562.
  • Christian C, Thorsten B. The preferred treatment for upper tract stones is extracorporeal shock wave lithotripsy (ESWL) or ureteroscopic: pro ESWL. Urology. 2009;74(2):259–262.
  • Romero V, Akpinar H, Assimos DG. Kidney stones: a global picture of prevalence, incidence, and associated risk factors. Rev Urol. 2010;12(2–3):e86-96–e96.
  • Li W, Mao Y, Lu C, et al. Role of sexual intercourse after shockwave lithotripsy for distal ureteral stones: a randomized controlled trial. Urol J. 2020;17(2):134–138.
  • Wagenius M, Jakobsson J, Stranne J, et al. Complications in extracorporeal shockwave lithotripsy: a cohort study. Scand J Urol. 2017;51(5):407–413.
  • Polat F, Yeşil S, Ak E, et al. Safety of ESWL in elderly: evaluation of independent predictors and comorbidity on stone-free rate and complications. Geriatr Gerontol Int. 2012;12(3):413–417.
  • Abdelghany M, Zaher T, El Halaby R, et al. Extracorporeal shock wave lithotripsy of lower ureteric stones: Outcome and criteria for success. Arab J Urol. 2011;9(1):35–39.
  • Nakasato T, Morita J, Ogawa Y. Evaluation of hounsfield units as a predictive factor for the outcome of extracorporeal shock wave lithotripsy and stone composition. Urolithiasis. 2015;43(1):69–75.
  • Wiesenthal JD, Ghiculete D, John D’A Honey R, et al. Evaluating the importance of mean stone density and skin-to-stone distance in predicting successful shock wave lithotripsy of renal and ureteric calculi. Urol Res. 2010;38(4):307–313.
  • Yoshida S, Hayashi T, Ikeda J, et al. Role of volume and attenuation value histogram of urinary stone on noncontrast helical computed tomography as predictor of fragility by extracorporeal shock wave lithotripsy. Urology. 2006;68(1):33–37.
  • Pareek G, Armenakas NA, Fracchia JA. Hounsfield units on computerized tomography predict stone-free rates after extracorporeal shock wave lithotripsy. J Urol. 2003;169(5):1679–1681.
  • Wang L-J, Wong Y-C, Chuang C-K, et al. Predictions of outcomes of renal stones after extracorporeal shock wave lithotripsy from stone characteristics determined by unenhanced helical computed tomography: a multivariate analysis. Eur Radiol. 2005;15(11):2238–2243.
  • Gupta NP, Ansari MS, Kesarvani P, et al. Role of computed tomography with no contrast medium enhancement in predicting the outcome of extracorporeal shock wave lithotripsy for urinary calculi. BJU Int. 2005;95(9):1285–1288. doi:.
  • Joseph P, Mandal AK, Singh SK, et al. Computerized tomography attenuation value of renal calculus: Can it predict successful fragmentation of the calculus by extracorporeal shock wave lithotripsy? A preliminary study. J Urol. 2002;167(5):1968–1971.
  • Ng C-F, Siu DY-W, Wong A, et al. Development of a scoring system from noncontrast computerized tomography measurements to improve the selection of upper ureteral stone for extracorporeal shock wave lithotripsy. J Urol. 2009;181(3):1151–1157.
  • Perks AE, Schuler TD, Lee J, et al. Stone attenuation and skin-to-Stone distance on computed tomography predicts for stone fragmentation by shock wave lithotripsy. Urology. 2008;72(4):765–769.
  • Tanaka M, Yokota E, Toyonaga Y, et al. Stone attenuation value and Cross-Sectional area on computed tomography predict the success of shock wave lithotripsy. Korean J Urol. 2013;54(7):454–459.
  • Pareek G, Armenakas NA, Panagopoulos G, et al. Extracorporeal shock wave lithotripsy success based on body mass index and hounsfield units. Urology. 2005;65(1):33–36.
  • Ouzaid I, Al-Qahtani S, Dominique S, et al. A 970 hounsfield units (HU) threshold of kidney stone density on non-contrast computed tomography (NCCT) improves patients’ selection for extracorporeal shockwave lithotripsy (ESWL): evidence from a prospective study. BJU Int. 2012;110(11b):E438–42.
  • Mullhaupt G, Engeler DS, Schmid HP, et al. How do stone attenuation and skin-to-stone distance in computed tomography influence the performance of shock wave lithotripsy in ureteral stone disease? BMC Urol. 2015;15:72.
  • Patel T, Kozakowski K, Hruby G, et al. Skin to stone distance is an independent predictor of stone-free status following shockwave lithotripsy. J Endourol. 2009;23(9):1383–1385.
  • Ather MH, Shrestha B, Mehmood A. Does ureteral stenting prior to shock wave lithotripsy influence the need for intervention in steinstrasse and related complications? Urol Int. 2009;83(2):222–225.
  • Musa AA. Use of double-J stents prior to extracorporeal shock wave lithotripsy is not beneficial: results of a prospective randomized study. Int Urol Nephrol. 2008;40(1):19–22.
  • Madbouly K, Sheir KZ, Elsobky E, et al. Risk factors for the formation of a steinstrasse after extracorporeal shock wave lithotripsy: a statistical model. J Urol. 2002;167(3):1239–1242.
  • Goel H, Gahlawat S, Bera M, et al. Role of clinical and radiological parameters in predicting the outcome of shockwave lithotripsy for ureteric stones. Urol Ann. 2018;10(2):159–164.
  • Somani BK, Desai M, Traxer O, et al. Stone-free rate (SFR): a new proposal for defining levels of SFR. Urolithiasis. 2014;42(2):95Epub 2013/12/10.
  • Petrides N, Ismail S, Anjum F, et al. How to maximize the efficacy of shockwave lithotripsy. Turk J Urol. 2020;46(Supp1):S19–S26.
  • Tokas T, Habicher M, Junker D, et al. Uncovering the real outcomes of active renal stone treatment by utilizing non-contrast computer tomography: a systematic review of the current literature. World J Urol. 2017;35(6):897–905.
  • Knoll T, Buchholz N, Wendt-Nordahl G. Extracorporeal shockwave lithotripsy vs. percutaneous nephrolithotomy vs. flexible ureterorenoscopy for lower-pole stones. Arab J Urol. 2012;10(3):336–341.