1,826
Views
33
CrossRef citations to date
0
Altmetric
Review

Morphogens and blood-brain barrier function in health and disease

&
Article: e1090524 | Received 18 Jun 2015, Accepted 30 Aug 2015, Published online: 23 Nov 2015

References

  • Shen S, Zhang W. ABC transporters and drug efflux at the blood-brain barrier. Rev. Neurosci. 2010; 21(1):29-53; PMID:20458886
  • Spector R. Nutrient transport systems in brain: 40 years of progress. J. Neurochem. 2009; 111(2):315-20; PMID:19686385; http://dx.doi.org/10.1111/j.1471-4159.2009.06326.x
  • Wolburg H, Lippoldt A. Tight junctions of the blood-brain barrier: development, composition and regulation. Vascul. Pharmacol. 2002; 38(6):323-37; PMID:12529927; http://dx.doi.org/10.1016/S1537-1891(02)00200-8
  • Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 2006; 7(1):41-53; PMID:16371949; http://dx.doi.org/10.1038/nrn1824
  • Duncan GS, Andrew DP, Takimoto H, Kaufman SA, Yoshida H, Spellberg J, de la Pompa JL, Elia A, Wakeham A, Karan-Tamir B, et al. Genetic evidence for functional redundancy of Platelet/Endothelial cell adhesion molecule-1 (PECAM-1): CD31-deficient mice reveal PECAM-1-dependent and PECAM-1-independent functions. J. Immunol. 1999; 162(5):3022-30; PMID:10072554
  • Liu W-Y, Wang Z-B, Zhang L-C, Wei X, Li L. Tight junction in blood-brain barrier: an overview of structure, regulation, and regulator substances. CNS Neurosci. Ther. 2012; 18(8):609-15; PMID:22686334; http://dx.doi.org/10.1111/j.1755-5949.2012.00340.x
  • Tietz S, Engelhardt B. Brain barriers: Crosstalk between complex tight junctions and adherens junctions. J. Cell Biol. 2015; 209(4):493-506; PMID:26008742; http://dx.doi.org/10.1083/jcb.201412147
  • Sá-Pereira I, Brites D, Brito MA. Neurovascular unit: a focus on pericytes. Mol. Neurobiol. 2012; 45(2):327-47; http://dx.doi.org/10.1007/s12035-012-8244-2
  • Daneman R. The blood-brain barrier in health and disease. Ann. Neurol. 2012; 72(5):648-72; PMID:23280789; http://dx.doi.org/10.1002/ana.23648
  • Engelhardt B. Immune cell entry into the central nervous system: involvement of adhesion molecules and chemokines. J. Neurol. Sci. 2008; 274(1-2):23-6; PMID:18573502; http://dx.doi.org/10.1016/j.jns.2008.05.019
  • Engelhardt B, Ransohoff RM. Capture, crawl, cross: the T cell code to breach the blood-brain barriers. Trends Immunol. 2012; 33(12):579-89; PMID:22926201; http://dx.doi.org/10.1016/j.it.2012.07.004
  • De Vries HE, Blom-Roosemalen MCM, Oosten M van, de Boer AG, van Berkel TJ, Breimer DD, Kuiper J. The influence of cytokines on the integrity of the blood-brain barrier in vitro. J. Neuroimmunol. 1996; 64(1):37-43; PMID:8598388; http://dx.doi.org/10.1016/0165-5728(95)00148-4
  • Juhler M, Blasberg RG, Fenstermacher JD, Patlak CS, Paulson OB. A spatial analysis of the blood-brain barrier damage in experimental allergic encephalomyelitis. J. Cereb. Blood Flow Metab. 1985; 5(4):545-53; PMID:3877064; http://dx.doi.org/10.1038/jcbfm.1985.82
  • Lee D-H, Gold R, Linker RA. Mechanisms of Oxidative Damage in Multiple Sclerosis and Neurodegenerative Diseases: Therapeutic Modulation via Fumaric Acid Esters. Int. J. Mol. Sci. 2012; 13(9):11783-803; PMID:23109883; http://dx.doi.org/10.3390/ijms130911783
  • Griot C, Vandevelde M, Richard A, Peterhans E, Stocker R. Selective degeneration of oligodendrocytes mediated by reactive oxygen species. Free Radic. Res. Commun. 1990; 11(4–5):181-93; PMID:1965721; http://dx.doi.org/10.3109/10715769009088915
  • Lakhan SE, Kirchgessner A, Tepper D, Leonard A. Matrix metalloproteinases and blood-brain barrier disruption in acute ischemic stroke. Front. Neurol. 2013; 4:32; PMID:23565108
  • Lassmann H, van Horssen J, Mahad D. Progressive multiple sclerosis: pathology and pathogenesis. Nat. Rev. Neurol. 2012; 8(11):647-56; PMID:23007702; http://dx.doi.org/10.1038/nrneurol.2012.168
  • Carreiras MC, Mendes E, Perry MJ, Francisco AP, Marco-Contelles J. The multifactorial nature of Alzheimer's disease for developing potential therapeutics. Curr. Top. Med. Chem. 2013; 13(15):1745-70; PMID:23931435; http://dx.doi.org/10.2174/15680266113139990135
  • Ozawa Y. Neurodegenerative disease: Pieces of the Parkinson's puzzle. Nat. Rev. Neurosci. 2010; 11(12):787-787; PMID:21132875; http://dx.doi.org/10.1038/nrn2945
  • Hardiman O, van den Berg LH, Kiernan MC. Clinical diagnosis and management of amyotrophic lateral sclerosis. Nat. Rev. Neurol. 2011; 7(11):639-49; PMID:21989247; http://dx.doi.org/10.1038/nrneurol.2011.153
  • Ashe HL, Briscoe J. The interpretation of morphogen gradients. Development 2006; 133(3):385-94; PMID:16410409; http://dx.doi.org/10.1242/dev.02238
  • Østerlund T, Kogerman P. Hedgehog signalling: how to get from Smo to Ci and Gli. Trends Cell Biol. 2006; 16(4):176-80; http://dx.doi.org/10.1016/j.tcb.2006.02.004
  • Patten I, Placzek M. The role of Sonic hedgehog in neural tube patterning. Cell. Mol. Life Sci. 2000; 57(12):1695-708; PMID:11130176; http://dx.doi.org/10.1007/PL00000652
  • Charron F, Stein E, Jeong J, McMahon AP, Tessier-Lavigne M. The Morphogen Sonic Hedgehog Is an Axonal Chemoattractant that Collaborates with Netrin-1 in Midline Axon Guidance. Cell 2003; 113(1):11-23; PMID:12679031; http://dx.doi.org/10.1016/S0092-8674(03)00199-5
  • Alvarez JI, Dodelet-Devillers A, Kebir H, Ifergan I, Fabre PJ, Terouz S, Sabbagh M, Wosik K, Bourbonnière L, Bernard M, et al. The Hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science 2011; 334(6063):1727-31; PMID:22144466; http://dx.doi.org/10.1126/science.1206936
  • Wang Y, Jin S, Sonobe Y, Cheng Y, Horiuchi H, Parajuli B, Kawanokuchi J, Mizuno T, Takeuchi H, Suzumura A. Interleukin-1β induces blood-brain barrier disruption by downregulating Sonic hedgehog in astrocytes. Kira J, ed. PLoS One 2014; 9(10):e110024; PMID:25313834; http://dx.doi.org/10.1371/journal.pone.0110024
  • Amankulor NM, Hambardzumyan D, Pyonteck SM, Becher OJ, Joyce JA, Holland EC. Sonic hedgehog pathway activation is induced by acute brain injury and regulated by injury-related inflammation. J. Neurosci. 2009; 29(33):10299-308; PMID:19692604; http://dx.doi.org/10.1523/JNEUROSCI.2500-09.2009
  • Xu QG, Midha R, Martinez JA, Guo GF, Zochodne DW. Facilitated sprouting in a peripheral nerve injury. Neuroscience 2008; 152(4):877-87; PMID:18358630; http://dx.doi.org/10.1016/j.neuroscience.2008.01.060
  • Mastronardi FG, daCruz LAG, Wang H, Boggs J, Moscarello MA. The amount of sonic hedgehog in multiple sclerosis white matter is decreased and cleavage to the signaling peptide is deficient. Mult. Scler. 2003; 9(4):362-71; PMID:12926841; http://dx.doi.org/10.1191/1352458503ms924oa
  • Zhang Y, Dong W, Guo S, Zhao S, He S, Zhang L, Tang Y, Wang H. Lentivirus-mediated delivery of sonic hedgehog into the striatum stimulates neuroregeneration in a rat model of Parkinson disease. Neurol. Sci. 2014; 35(12):1931-40; PMID:25030123; http://dx.doi.org/10.1007/s10072-014-1866-6
  • Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, Zhang Z, Lin X, He X. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 2002; 108(6):837-47; PMID:11955436; http://dx.doi.org/10.1016/S0092-8674(02)00685-2
  • Maniatis T. A ubiquitin ligase complex essential for the NF-kappaB, Wnt/Wingless, and Hedgehog signaling pathways. Genes Dev. 1999; 13(5):505-10; PMID:10072378; http://dx.doi.org/10.1101/gad.13.5.505
  • Buscarlet M, Stifani S. The “Marx” of Groucho on development and disease. Trends Cell Biol. 2007; 17(7):353-61; PMID:17643306; http://dx.doi.org/10.1016/j.tcb.2007.07.002
  • Joksimovic M, Patel M, Taketo MM, Johnson R, Awatramani R. Ectopic Wnt/beta-catenin signaling induces neurogenesis in the spinal cord and hindbrain floor plate. PLoS One 2012; 7(1):e30266; PMID:22276170; http://dx.doi.org/10.1371/journal.pone.0030266
  • Tang M, Villaescusa JC, Luo SX, Guitarte C, Lei S, Miyamoto Y, Taketo MM, Arenas E, Huang EJ. Interactions of Wnt/beta-catenin signaling and sonic hedgehog regulate the neurogenesis of ventral midbrain dopamine neurons. J. Neurosci. 2010; 30(27):9280-91; PMID:20610763; http://dx.doi.org/10.1523/JNEUROSCI.0860-10.2010
  • Gulacsi AA, Anderson SA. Beta-catenin-mediated Wnt signaling regulates neurogenesis in the ventral telencephalon. Nat. Neurosci. 2008; 11(12):1383-91; PMID:18997789; http://dx.doi.org/10.1038/nn.2226
  • Daneman R, Agalliu D, Zhou L, Kuhnert F, Kuo CJ, Barres BA. Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc. Natl. Acad. Sci. U. S. A. 2009; 106(2):641-6; PMID:19129494; http://dx.doi.org/10.1073/pnas.0805165106
  • Liebner S, Corada M, Bangsow T, Babbage J, Taddei A, Czupalla CJ, Reis M, Felici A, Wolburg H, Fruttiger M, et al. Wnt/beta-catenin signaling controls development of the blood-brain barrier. J. Cell Biol. 2008; 183(3):409-17; PMID:18955553; http://dx.doi.org/10.1083/jcb.200806024
  • Inestrosa N, De Ferrari GV, Garrido JL, Alvarez A, Olivares GH, Barría MI, Bronfman M, Chacón MA. Wnt signaling involvement in beta-amyloid-dependent neurodegeneration. Neurochem. Int. 2002; 41(5):341-4; PMID:12176076; http://dx.doi.org/10.1016/S0197-0186(02)00056-6
  • Inestrosa NC, Toledo EM. The role of Wnt signaling in neuronal dysfunction in Alzheimer's Disease. Mol. Neurodegener. 2008; 3:9; PMID:18652670; http://dx.doi.org/10.1186/1750-1326-3-9
  • L'Episcopo F, Tirolo C, Testa N, Caniglia S, Morale MC, Cossetti C, D'Adamo P, Zardini E, Andreoni L, Ihekwaba AE, et al. Reactive astrocytes and Wnt/β-catenin signaling link nigrostriatal injury to repair in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Neurobiol. Dis. 2011; 41(2):508-27; http://dx.doi.org/10.1016/j.nbd.2010.10.023
  • L'Episcopo F, Tirolo C, Caniglia S, Testa N, Morale MC, Serapide MF, Pluchino S, Marchetti B. Targeting Wnt signaling at the neuroimmune interface for dopaminergic neuroprotection/repair in Parkinson's disease. J. Mol. Cell Biol. 2014; 6(1):13-26; http://dx.doi.org/10.1093/jmcb/mjt053
  • Duka T, Duka V, Joyce JN, Sidhu A. Alpha-Synuclein contributes to GSK-3beta-catalyzed Tau phosphorylation in Parkinson's disease models. FASEB J. 2009; 23(9):2820-30; PMID:19369384; http://dx.doi.org/10.1096/fj.08-120410
  • Kwok JBJ, Hallupp M, Loy CT, Chan DK, Woo J, Mellick GD, Buchanan DD, Silburn PA, Halliday GM, Schofield PR. GSK3B polymorphisms alter transcription and splicing in Parkinson's disease. Ann. Neurol. 2005; 58(6):829-39; PMID:16315267; http://dx.doi.org/10.1002/ana.20691
  • Fancy SPJ, Baranzini SE, Zhao C, Yuk DI, Irvine KA, Kaing S, Sanai N, Franklin RJ, Rowitch DH. Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev. 2009; 23(13):1571-85; PMID:19515974; http://dx.doi.org/10.1101/gad.1806309
  • Yu S, Levi L, Siegel R, Noy N. Retinoic acid induces neurogenesis by activating both retinoic acid receptors (RARs) and peroxisome proliferator-activated receptor β/δ (PPARβ/δ). J. Biol. Chem. 2012; 287(50):42195-205; PMID:23105114; http://dx.doi.org/10.1074/jbc.M112.410381
  • Dmetrichuk JM, Carlone RL, Spencer GE. Retinoic acid induces neurite outgrowth and growth cone turning in invertebrate neurons. Dev. Biol. 2006; 294(1):39-49; PMID:16626686; http://dx.doi.org/10.1016/j.ydbio.2006.02.018
  • Jacobs S, Lie DC, DeCicco KL, Shi Y, DeLuca LM, Gage FH, Evans RM. Retinoic acid is required early during adult neurogenesis in the dentate gyrus. Proc. Natl. Acad. Sci. U. S. A. 2006; 103(10):3902-7; PMID:16505366; http://dx.doi.org/10.1073/pnas.0511294103
  • Mizee MR, Wooldrik D, Lakeman KAM, van het Hof B, Drexhage JA, Geerts D, Bugiani M, Aronica E, Mebius RE, Prat A, et al. Retinoic acid induces blood-brain barrier development. J. Neurosci. 2013; 33(4):1660-71; PMID:23345238; http://dx.doi.org/10.1523/JNEUROSCI.1338-12.2013
  • Lippmann ES, Al-Ahmad A, Azarin SM, Palecek SP, Shusta EV. A retinoic acid-enhanced, multicellular human blood-brain barrier model derived from stem cell sources. Sci. Rep. 2014; 4:4160; PMID:24561821; http://dx.doi.org/10.1038/srep04160
  • Jiménez-Jiménez FJ, Molina JA, de Bustos F, Ortí-Pareja M, Benito-León J, Tallón-Barranco A, Gasalla T, Porta J, Arenas J. Serum levels of beta-carotene, alpha-carotene and vitamin A in patients with Alzheimer's disease. Eur. J. Neurol. 1999; 6(4):495-7; http://dx.doi.org/10.1046/j.1468-1331.1999.640495.x
  • Connor MJ, Sidell N. Retinoic acid synthesis in normal and Alzheimer diseased brain and human neural cells. Mol. Chem. Neuropathol. 1997; 30(3):239-52; PMID:9165489; http://dx.doi.org/10.1007/BF02815101
  • Ding Y, Qiao A, Wang Z, Goodwin JS, Lee ES, Block ML, Allsbrook M, McDonald MP, Fan GH. Retinoic acid attenuates beta-amyloid deposition and rescues memory deficits in an Alzheimer's disease transgenic mouse model. J. Neurosci. 2008; 28(45):11622-34; PMID:18987198; http://dx.doi.org/10.1523/JNEUROSCI.3153-08.2008
  • Goncalves MB, Clarke E, Hobbs C, Malmqvist T, Deacon R, Jack J, Corcoran JP. Amyloid β inhibits retinoic acid synthesis exacerbating Alzheimer disease pathology which can be attenuated by an retinoic acid receptor α agonist. Eur. J. Neurosci. 2013; 37(7):1182-92; PMID:23379615; http://dx.doi.org/10.1111/ejn.12142
  • Takeda A, Nyssen OP, Syed A, Jansen E, Bueno-de-Mesquita B, Gallo V. Vitamin A and carotenoids and the risk of Parkinson's disease: a systematic review and meta-analysis. Neuroepidemiology 2014; 42(1):25-38; PMID:24356061; http://dx.doi.org/10.1159/000355849
  • Yin L-H, Shen H, Diaz-Ruiz O, Bäckman CM, Bae E, Yu SJ, Wang Y. Early post-treatment with 9-cis retinoic acid reduces neurodegeneration of dopaminergic neurons in a rat model of Parkinson's disease. BMC Neurosci. 2012; 13(1):120; PMID:23040108; http://dx.doi.org/10.1186/1471-2202-13-120
  • Ulusoy GK, Celik T, Kayir H, Gürsoy M, Isik AT, Uzbay TI. Effects of pioglitazone and retinoic acid in a rotenone model of Parkinson's disease. Brain Res. Bull. 2011; 85(6):380-4; PMID:21600965; http://dx.doi.org/10.1016/j.brainresbull.2011.05.001
  • Mizee MR, Nijland PG, van der Pol SMA, Drexhage JA, van Het Hof B, Mebius R, van der Valk P, van Horssen J, Reijerkerk A, de Vries HE. Astrocyte-derived retinoic acid: a novel regulator of blood-brain barrier function in multiple sclerosis. Acta Neuropathol. 2014; 128(5):691-703; PMID:25149081; http://dx.doi.org/10.1007/s00401-014-1335-6
  • Abtahi Froushani SM, Delirezh N, Hobbenaghi R, Mosayebi G. Synergistic effects of atorvastatin and all-trans retinoic acid in ameliorating animal model of multiple sclerosis. Immunol. Invest. 2014; 43(1):54-68; PMID:24063549; http://dx.doi.org/10.3109/08820139.2013.825269
  • Fragoso YD, Stoney PN, McCaffery PJ. The evidence for a beneficial role of vitamin A in multiple sclerosis. CNS Drugs 2014; 28(4):291-9; PMID:24557746; http://dx.doi.org/10.1007/s40263-014-0148-4
  • Massagué J. TGF-beta signal transduction. Annu. Rev. Biochem. 1998; 67:753-91; http://dx.doi.org/10.1146/annurev.biochem.67.1.753
  • McCormack N, O'Dea S. Regulation of epithelial to mesenchymal transition by bone morphogenetic proteins. Cell. Signal. 2013; 25(12):2856-62; PMID:24044921; http://dx.doi.org/10.1016/j.cellsig.2013.09.012
  • Mattar P, Cayouette M. Temporal control of neural progenitors: TGF-β switches the clock forward. Neuron 2014; 84(5):885-8; PMID:25475182; http://dx.doi.org/10.1016/j.neuron.2014.11.013
  • Stipursky J, Francis D, Dezonne RS, Bérgamo de Araújo AP, Souza L, Moraes CA, Alcantara Gomes FC. TGF-β1 promotes cerebral cortex radial glia-astrocyte differentiation in vivo. Front. Cell. Neurosci. 2014; 8:393; PMID:25484855; http://dx.doi.org/10.3389/fncel.2014.00393
  • Perrella MA, Jain MK, Lee ME. Role of TGF-beta in vascular development and vascular reactivity. Miner. Electrolyte Metab. 1998; 24(2-3):136-43; PMID:9525696; http://dx.doi.org/10.1159/000057361
  • Flanders KC, Ren RF, Lippa CF. Transforming growth factor-betas in neurodegenerative disease. Prog. Neurobiol. 1998; 54(1):71-85; PMID:9460794; http://dx.doi.org/10.1016/S0301-0082(97)00066-X
  • Dohgu S, Yamauchi A, Takata F, Naito M, Tsuruo T, Higuchi S, Sawada Y, Kataoka Y. Transforming Growth Factor- 1 Upregulates the Tight Junction and P-glycoprotein of Brain Microvascular Endothelial Cells. Cell. Mol. Neurobiol. 2004; 24(3):491-497; PMID:15206827; http://dx.doi.org/10.1023/B:CEMN.0000022776.47302.ce
  • Dohgu S, Takata F, Yamauchi A, Nakagawa S, Egawa T, Naito M, Tsuruo T, Sawada Y, Niwa M, Kataoka Y. Brain pericytes contribute to the induction and up-regulation of blood-brain barrier functions through transforming growth factor-beta production. Brain Res. 2005; 1038(2):208-15; PMID:15757636; http://dx.doi.org/10.1016/j.brainres.2005.01.027
  • Seo JH, Maki T, Maeda M, Miyamoto N, Liang AC, Hayakawa K, Pham LD, Suwa F, Taguchi A, Matsuyama T, et al. Oligodendrocyte precursor cells support blood-brain barrier integrity via TGF-β signaling. PLoS One 2014; 9(7):e103174; PMID:25078775; http://dx.doi.org/10.1371/journal.pone.0103174
  • Flanders KC, Lippa CF, Smith TW, Pollen DA, Sporn MB. Altered expression of transforming growth factor-beta in Alzheimer's disease. Neurology 1995; 45(8):1561-9; PMID:7543987; http://dx.doi.org/10.1212/WNL.45.8.1561
  • De Servi B, La Porta CAM, Bontempelli M, Comolli R. Decrease of TGF-β1 plasma levels and increase of nitric oxide synthase activity in leukocytes as potential biomarkers of Alzheimer's disease. Exp. Gerontol. 2002; 37(6):813-821; PMID:12175481; http://dx.doi.org/10.1016/S0531-5565(02)00018-9
  • Tesseur I, Zou K, Esposito L, Bard F, Berber E, Can JV, Lin AH, Crews L, Tremblay P, Mathews P, et al. Deficiency in neuronal TGF-beta signaling promotes neurodegeneration and Alzheimer's pathology. J. Clin. Invest. 2006; 116(11):3060-9; PMID:17080199; http://dx.doi.org/10.1172/JCI27341
  • Mogi M, Harada M, Kondo T, Narabayashi H, Riederer P, Nagatsu T. Transforming growth factor-β1 levels are elevated in the striatum and in ventricular cerebrospinal fluid in Parkinson's disease. Neurosci. Lett. 1995; 193(2):129-132; PMID:7478158; http://dx.doi.org/10.1016/0304-3940(95)11686-Q
  • Qian L, Wei S-J, Zhang D, Hu X, Xu Z, Wilson B, El-Benna J, Hong JS, Flood PM. Potent Anti-Inflammatory and Neuroprotective Effects of TGF- 1 Are Mediated through the Inhibition of ERK and p47phox-Ser345 Phosphorylation and Translocation in Microglia. J. Immunol. 2008; 181(1):660-668; PMID:18566433; http://dx.doi.org/10.4049/jimmunol.181.1.660
  • Nicoletti F, Di Marco R, Patti F, Reggio E, Nicoletti A, Zaccone P, Stivala F, Meroni PL, Reggio A. Blood levels of transforming growth factor-beta 1 (TGF-beta1) are elevated in both relapsing remitting and chronic progressive multiple sclerosis (MS) patients and are further augmented by treatment with interferon-beta 1b (IFN-beta1b). Clin. Exp. Immunol. 1998; 113(1):96-9; PMID:9697990; http://dx.doi.org/10.1046/j.1365-2249.1998.00604.x
  • Racke MK, Dhib-Jalbut S, Cannella B, Albert PS, Raine CS, McFarlin DE. Prevention and treatment of chronic relapsing experimental allergic encephalomyelitis by transforming growth factor beta 1. J. Immunol. 1991; 146(9):3012-3017; PMID:1707929
  • Liu A, Niswander LA. Bone morphogenetic protein signalling and vertebrate nervous system development. Nat. Rev. Neurosci. 2005; 6(12):945-54; PMID:16340955; http://dx.doi.org/10.1038/nrn1805
  • Xie Z, Sheng N, Jing N. BMP signaling pathway and spinal cord development. Front. Biol. (Beijing). 2012; 7(1):24-29
  • Araya R, Kudo M, Kawano M, Ishii K, Hashikawa T, Iwasato T, Itohara S, Terasaki T, Oohira A, Mishina Y, et al. BMP signaling through BMPRIA in astrocytes is essential for proper cerebral angiogenesis and formation of the blood-brain-barrier. Mol. Cell. Neurosci. 2008; 38(3):417-30; PMID:18501628; http://dx.doi.org/10.1016/j.mcn.2008.04.003
  • Crews L, Adame A, Patrick C, Delaney A, Pham E, Rockenstein E, Hansen L, Masliah E. Increased BMP6 levels in the brains of Alzheimer's disease patients and APP transgenic mice are accompanied by impaired neurogenesis. J. Neurosci. 2010; 30(37):12252-62; PMID:20844121; http://dx.doi.org/10.1523/JNEUROSCI.1305-10.2010
  • Li D, Tang J, Xu H, Fan X, Bai Y, Yang L. Decreased hippocampal cell proliferation correlates with increased expression of BMP4 in the APPswe/PS1DeltaE9 mouse model of Alzheimer's disease. Hippocampus 2008; 18(7):692-8; PMID:18398851; http://dx.doi.org/10.1002/hipo.20428
  • Tang J, Song M, Wang Y, Fan X, Xu H, Bai Y. Noggin and BMP4 co-modulate adult hippocampal neurogenesis in the APP(swe)/PS1(DeltaE9) transgenic mouse model of Alzheimer's disease. Biochem. Biophys. Res. Commun. 2009; 385(3):341-5; PMID:19463786; http://dx.doi.org/10.1016/j.bbrc.2009.05.067
  • Harvey BK, Mark A, Chou J, Chen GJ, Hoffer BJ, Wang Y. Neurotrophic effects of bone morphogenetic protein-7 in a rat model of Parkinson's disease. Brain Res. 2004; 1022(1-2):88-95; PMID:15353217; http://dx.doi.org/10.1016/j.brainres.2004.06.072
  • Stull ND, Jung JW, Iacovitti L. Induction of a dopaminergic phenotype in cultured striatal neurons by bone morphogenetic proteins. Dev. Brain Res. 2001; 130(1):91-98; http://dx.doi.org/10.1016/S0165-3806(01)00216-4
  • Brederlau A. Bone Morphogenetic Proteins but Not Growth Differentiation Factors Induce Dopaminergic Differentiation in Mesencephalic Precursors. Mol. Cell. Neurosci. 2002; 21(3):367-378; PMID:12498780; http://dx.doi.org/10.1006/mcne.2002.1178
  • Ara J, See J, Mamontov P, Hahn A, Bannerman P, Pleasure D, Grinspan JB. Bone morphogenetic proteins 4, 6, and 7 are up-regulated in mouse spinal cord during experimental autoimmune encephalomyelitis. J. Neurosci. Res. 2008; 86(1):125-35; PMID:17722066; http://dx.doi.org/10.1002/jnr.21462
  • Deininger M, Meyermann R, Schluesener H. Detection of two transforming growth factor-beta-related morphogens, bone morphogenetic proteins-4 and -5, in RNA of multiple sclerosis and Creutzfeldt-Jakob disease lesions. Acta Neuropathol. 1995; 90(1):76-9; PMID:7572083; http://dx.doi.org/10.1007/BF00294462
  • Sabo JK, Aumann TD, Merlo D, Kilpatrick TJ, Cate HS. Remyelination is altered by bone morphogenic protein signaling in demyelinated lesions. J. Neurosci. 2011; 31(12):4504-10; PMID:21430151; http://dx.doi.org/10.1523/JNEUROSCI.5859-10.2011
  • Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 1996; 87(7):1171-80; PMID:8980224; http://dx.doi.org/10.1016/S0092-8674(00)81813-9
  • Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997; 277(5322):55-60; PMID:9204896; http://dx.doi.org/10.1126/science.277.5322.55
  • Lee HJ, Cho C-H, Hwang S-J, Choi HH, Kim KT, Ahn SY, Kim JH, Oh JL, Lee GM, Koh GY. Biological characterization of angiopoietin-3 and angiopoietin-4. FASEB J. 2004; 18(11):1200-8; PMID:15284220; http://dx.doi.org/10.1096/fj.03-1466com
  • Meng Z, Li M, He Q, Jiang S, Zhang X, Xiao J, Bai Y. Ectopic expression of human angiopoietin-1 promotes functional recovery and neurogenesis after focal cerebral ischemia. Neuroscience 2014; 267:135-46; PMID:24607344; http://dx.doi.org/10.1016/j.neuroscience.2014.02.036
  • Marteau L, Pacary E, Valable S, Bernaudin M, Guillemot F, Petit E. Angiopoietin-2 regulates cortical neurogenesis in the developing telencephalon. Cereb. Cortex 2011; 21(7):1695-702; http://dx.doi.org/10.1093/cercor/bhq243
  • Thurston G. Leakage-Resistant Blood Vessels in Mice Transgenically Overexpressing Angiopoietin-1. Science (80-. ). 1999; 286(5449):2511-2514; http://dx.doi.org/10.1126/science.286.5449.2511
  • Thurston G, Rudge JS, Ioffe E, Zhou H, Ross L, Croll SD, Glazer N, Holash J, McDonald DM, Yancopoulos GD. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat. Med. 2000; 6(4):460-3; PMID:10742156; http://dx.doi.org/10.1038/74725
  • Zhang ZG, Zhang L, Tsang W, Soltanian-Zadeh H, Morris D, Zhang R, Goussev A, Powers C, Yeich T, Chopp M. Correlation of VEGF and angiopoietin expression with disruption of blood-brain barrier and angiogenesis after focal cerebral ischemia. J. Cereb. Blood Flow Metab. 2002; 22(4):379-92; PMID:11919509; http://dx.doi.org/10.1097/00004647-200204000-00002
  • Nourhaghighi N, Teichert-Kuliszewska K, Davis J, Stewart DJ, Nag S. Altered Expression of Angiopoietins During Blood-Brain Barrier Breakdown and Angiogenesis. Lab. Investig. 2003; 83(8):1211-1222; http://dx.doi.org/10.1097/01.LAB.0000082383.40635.FE
  • Yu H, Wang P, An P, Xue Y, Yixue X. Recombinant human angiopoietin-1 ameliorates the expressions of ZO-1, occludin, VE-cadherin, and PKCα signaling after focal cerebral ischemia/reperfusion in rats. J. Mol. Neurosci. 2012; 46(1):236-47; PMID:21710361; http://dx.doi.org/10.1007/s12031-011-9584-5
  • Zhao Y, Li Z, Wang R, Wei J, Li G, Zhao H. Angiopoietin 1 counteracts vascular endothelial growth factor-induced blood-brain barrier permeability and alleviates ischemic injury in the early stages of transient focal cerebral ischemia in rats. Neurol. Res. 2010; 32(7):748-55; PMID:19660197; http://dx.doi.org/10.1179/016164109X12445616596562
  • Avraham HK, Jiang S, Fu Y, Nakshatri H, Ovadia H, Avraham S. Angiopoietin-2 mediates blood-brain barrier impairment and colonization of triple-negative breast cancer cells in brain. J. Pathol. 2014; 232(3):369-81; PMID:24421076; http://dx.doi.org/10.1002/path.4304
  • Lai D-M, Li H, Lee C-C, Tzeng YS, Hsieh YH, Hsu WM, Hsieh FJ, Cheng JT, Tu YK. Angiopoietin-like protein 1 decreases blood brain barrier damage and edema following focal cerebral ischemia in mice. Neurochem. Int. 2008; 52(3):470-7; PMID:17919782; http://dx.doi.org/10.1016/j.neuint.2007.08.010
  • Bouleti C, Mathivet T, Coqueran B, Serfaty JM, Lesage M, Berland E, Ardidie-Robouant C, Kauffenstein G, Henrion D, Lapergue B, et al. Protective effects of angiopoietin-like 4 on cerebrovascular and functional damages in ischaemic stroke. Eur. Heart J. 2013; 34(47):3657-68; PMID:23674618; http://dx.doi.org/10.1093/eurheartj/eht153
  • Thirumangalakudi L, Samany PG, Owoso A, Wiskar B, Grammas P. Angiogenic proteins are expressed by brain blood vessels in Alzheimer's disease. J. Alzheimers. Dis. 2006; 10(1):111-8; PMID:16988487
  • Paris D, Townsend K, Quadros A, Humphrey J, Sun J, Brem S, Wotoczek-Obadia M, DelleDonne A, Patel N, Obregon DF, et al. Inhibition of angiogenesis by Abeta peptides. Angiogenesis 2004; 7(1):75-85; PMID:15302999; http://dx.doi.org/10.1023/B:AGEN.0000037335.17717.bf
  • Sillén A, Brohede J, Lilius L, Forsell C, Andrade J, Odeberg J, Ebise H, Winblad B, Graff C. Linkage to 20p13 including the ANGPT4 gene in families with mixed Alzheimer's disease and vascular dementia. J. Hum. Genet. 2010; 55(10):649-55; http://dx.doi.org/10.1038/jhg.2010.79
  • Jiang H, Zhang F, Yang J, Han S. Angiopoietin-1 ameliorates inflammation-induced vascular leakage and improves functional impairment in a rat model of acute experimental autoimmune encephalomyelitis. Exp. Neurol. 2014; 261:245-57; PMID:24852101; http://dx.doi.org/10.1016/j.expneurol.2014.05.013
  • Luo Y, Raible D, Raper JA. Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell 1993; 75(2):217-27; PMID:8402908; http://dx.doi.org/10.1016/0092-8674(93)80064-L
  • Unified nomenclature for the semaphorins/collapsins. Semaphorin Nomenclature Committee. Cell 1999; 97(5):551-2; PMID:10367884; http://dx.doi.org/10.1016/S0092-8674(00)80766-7
  • Tamagnone L, Artigiani S, Chen H, He Z, Ming GI, Song H, Chedotal A, Winberg ML, Goodman CS, Poo M, et al. Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates. Cell 1999; 99(1):71-80; PMID:10520995; http://dx.doi.org/10.1016/S0092-8674(00)80063-X
  • He Z, Tessier-Lavigne M. Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell 1997; 90(4):739-51; PMID:9288753; http://dx.doi.org/10.1016/S0092-8674(00)80534-6
  • Koncina E, Roth L, Gonthier B, Bagnard D. Role of Semaphorins during Axon Growth and Guidance. Adv Exp Med Biol 621:50-64
  • Bagnard D, Lohrum M, Uziel D, Püschel AW, Bolz J. Semaphorins act as attractive and repulsive guidance signals during the development of cortical projections. Development 1998; 125(24):5043-53; PMID:9811588
  • De Castro F, Hu L, Drabkin H, Sotelo C, Chédotal A. Chemoattraction and chemorepulsion of olfactory bulb axons by different secreted semaphorins. J. Neurosci. 1999; 19(11):4428-36; PMID:10341244
  • Serini G, Valdembri D, Zanivan S, Morterra G, Burkhardt C, Caccavari F, Zammataro L, Primo L, Tamagnone L, Logan M, et al. Class 3 semaphorins control vascular morphogenesis by inhibiting integrin function. Nature 2003; 424(6947):391-7; PMID:12879061; http://dx.doi.org/10.1038/nature01784
  • Suzuki K, Kumanogoh A, Kikutani H. Semaphorins and their receptors in immune cell interactions. Nat. Immunol. 2008; 9(1):17-23; PMID:18087252; http://dx.doi.org/10.1038/ni1553
  • Acevedo LM, Barillas S, Weis SM, Göthert JR, Cheresh DA. Semaphorin 3A suppresses VEGF-mediated angiogenesis yet acts as a vascular permeability factor. Blood 2008; 111(5):2674-80; PMID:18180379; http://dx.doi.org/10.1182/blood-2007-08-110205
  • Le Guelte A, Galan-Moya E-M, Dwyer J, Treps L, Kettler G, Hebda JK, Dubois S, Auffray C, Chneiweiss H, Bidere N, et al. Semaphorin 3A elevates endothelial cell permeability through PP2A inactivation. J. Cell Sci. 2012; 125(Pt 17):4137-46; PMID:22685328; http://dx.doi.org/10.1242/jcs.108282
  • Smith ES, Jonason A, Reilly C, Veeraraghavan J, Fisher T, Doherty M, Klimatcheva E, Mallow C, Cornelius C, Leonard JE, et al. SEMA4D compromises blood–brain barrier, activates microglia, and inhibits remyelination in neurodegenerative disease. Neurobiol. Dis. 2015; 73:254-268; http://dx.doi.org/10.1016/j.nbd.2014.10.008
  • Good PF, Alapat D, Hsu A, Chu C, Perl D, Wen X, Burstein DE, Kohtz DS. A role for semaphorin 3A signaling in the degeneration of hippocampal neurons during Alzheimer's disease. J. Neurochem. 2004; 91(3):716-36; PMID:15485501; http://dx.doi.org/10.1111/j.1471-4159.2004.02766.x
  • Jun G, Asai H, Zeldich E, Drapeau E, Chen C, Chung J, Park JH, Kim S, Haroutunian V, Foroud T, et al. PLXNA4 is associated with Alzheimer disease and modulates tau phosphorylation. Ann. Neurol. 2014; 76(3):379-92; PMID:25043464; http://dx.doi.org/10.1002/ana.24219
  • Clarimon J, Scholz S, Fung H-C, Hardy J, Eerola J, Hellstrom O, Chen CM, Wu YR, Tienari PJ, Singleton A. Conflicting results regarding the semaphorin gene (SEMA5A) and the risk for Parkinson disease. Am. J. Hum. Genet. 2006; 78(6):1082-4; author reply 1092-4; PMID:16685660; http://dx.doi.org/10.1086/504727
  • Okuno T, Nakatsuji Y, Kumanogoh A. The role of immune semaphorins in multiple sclerosis. FEBS Lett. 2011; 585(23):3829-35; PMID:21420960; http://dx.doi.org/10.1016/j.febslet.2011.03.033
  • Pardridge WM. Molecular Trojan horses for blood-brain barrier drug delivery. Curr. Opin. Pharmacol. 2006; 6(5):494-500; PMID:16839816; http://dx.doi.org/10.1016/j.coph.2006.06.001
  • Peluffo H, Unzueta U, Negro-Demontel ML, Xu Z, Váquez E, Ferrer-Miralles N, Villaverde A. BBB-targeting, protein-based nanomedicines for drug and nucleic acid delivery to the CNS. Biotechnol. Adv. 33(2):277-87; PMID:25698504; http://dx.doi.org/10.1016/j.biotechadv.2015.02.004
  • Southwell AL, Franciosi S, Villanueva EB, Xie Y, Winter LA, Veeraraghavan J, Jonason A, Felczak B, Zhang W, Kovalik V, et al. Anti-semaphorin 4D immunotherapy ameliorates neuropathology and some cognitive impairment in the YAC128 mouse model of Huntington disease. Neurobiol. Dis. 2015; 76:46-56; PMID:25662335; http://dx.doi.org/10.1016/j.nbd.2015.01.002
  • Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003; 425(6958):577-84; PMID:14534577; http://dx.doi.org/10.1038/nature02006
  • Pendaries V, Verrecchia F, Michel S, Mauviel A. Retinoic acid receptors interfere with the TGF-beta/Smad signaling pathway in a ligand-specific manner. Oncogene 2003; 22(50):8212-20; PMID:14603262; http://dx.doi.org/10.1038/sj.onc.1206913
  • Sheng N, Xie Z, Wang C, Bai G, Zhang K, Zhu Q, Song J, Guillemot F, Chen YG, Lin A, et al. Retinoic acid regulates bone morphogenic protein signal duration by promoting the degradation of phosphorylated Smad1. Proc. Natl. Acad. Sci. U. S. A. 2010; 107(44):18886-91; PMID:20956305; http://dx.doi.org/10.1073/pnas.1009244107
  • Guo X, Wang X-F. Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res. 2009; 19(1):71-88; PMID:19002158; http://dx.doi.org/10.1038/cr.2008.302
  • Kim W, Moon S-O, Lee SY, Jang KY, Cho CH, Koh GY, Choi KS, Yoon KH, Sung MJ, Kim DH, et al. COMP-angiopoietin-1 ameliorates renal fibrosis in a unilateral ureteral obstruction model. J. Am. Soc. Nephrol. 2006; 17(9):2474-83; PMID:16885409; http://dx.doi.org/10.1681/ASN.2006020109
  • Kim W. The role of angiopoietin-1 in kidney disease. Electrolyte Blood Press. 2008; 6(1):22-6.
  • Nakamura T, Okada T, Endo M, Kadomatsu T, Taniwaki T, Sei A, Odagiri H, Masuda T, Fujimoto T, Nakamura T, et al. Angiopoietin-like protein 2 induced by mechanical stress accelerates degeneration and hypertrophy of the ligamentum flavum in lumbar spinal canal stenosis. PLoS One 2014; 9(1):e85542; PMID:24465594; http://dx.doi.org/10.1371/journal.pone.0085542
  • Glinka Y, Prud'homme GJ. Neuropilin-1 is a receptor for transforming growth factor beta-1, activates its latent form, and promotes regulatory T cell activity. J. Leukoc. Biol. 2008; 84(1):302-10; PMID:18436584; http://dx.doi.org/10.1189/jlb.0208090
  • Cao Y, Szabolcs A, Dutta SK, Yaqoob U, Jagavelu K, Wang L, Leof EB, Urrutia RA, Shah VH, Mukhopadhyay D. Neuropilin-1 mediates divergent R-Smad signaling and the myofibroblast phenotype. J. Biol. Chem. 2010; 285(41):31840-8; PMID:20675371; http://dx.doi.org/10.1074/jbc.M110.151696
  • Zhang YE. Non-Smad pathways in TGF-beta signaling. Cell Res. 2009; 19(1):128-39; PMID:19114990; http://dx.doi.org/10.1038/cr.2008.328
  • Yen A, Roberson MS, Varvayanis S, Lee AT. Retinoic acid induced mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) kinase-dependent MAP kinase activation needed to elicit HL-60 cell differentiation and growth arrest. Cancer Res. 1998; 58(14):3163-72; PMID:9679985
  • Bikkavilli RK, Malbon CC. Mitogen-activated protein kinases and Wnt/beta-catenin signaling: Molecular conversations among signaling pathways. Commun. Integr. Biol. 2009; 2(1):46-9; PMID:19513264; http://dx.doi.org/10.4161/cib.2.1.7503
  • Guardavaccaro D, Clevers H. Wnt/β-catenin and MAPK signaling: allies and enemies in different battlefields. Sci. Signal. 2012; 5(219):pe15; PMID:22494969; http://dx.doi.org/10.1126/scisignal.2002921
  • Elia D, Madhala D, Ardon E, Reshef R, Halevy O. Sonic hedgehog promotes proliferation and differentiation of adult muscle cells: Involvement of MAPK/ERK and PI3K/Akt pathways. Biochim. Biophys. Acta 2007; 1773(9):1438-46
  • Kessaris N, Jamen F, Rubin LL, Richardson WD. Cooperation between sonic hedgehog and fibroblast growth factor/MAPK signalling pathways in neocortical precursors. Development 2004; 131(6):1289-98; PMID:14960493; http://dx.doi.org/10.1242/dev.01027
  • Zhu W-H, MacIntyre A, Nicosia RF. Regulation of angiogenesis by vascular endothelial growth factor and angiopoietin-1 in the rat aorta model: distinct temporal patterns of intracellular signaling correlate with induction of angiogenic sprouting. Am. J. Pathol. 2002; 161(3):823-30; PMID:12213710; http://dx.doi.org/10.1016/S0002-9440(10)64242-3
  • Hashiramoto A, Sakai C, Yoshida K, Tsumiyama K, Miura Y, Shiozawa K, Nose M, Komai K, Shiozawa S. Angiopoietin 1 directly induces destruction of the rheumatoid joint by cooperative, but independent, signaling via ERK/MAPK and phosphatidylinositol 3-kinase/Akt. Arthritis Rheum. 2007; 56(7):2170-9; PMID:17599743; http://dx.doi.org/10.1002/art.22727
  • Li Y, Chen J, Wu C, Wang L, Lu M, Chen X. Hepatitis B virus/hepatitis C virus upregulate angiopoietin-2 expression through mitogen-activated protein kinase pathway. Hepatol. Res. 2010; 40(10):1022-33; PMID:20887338; http://dx.doi.org/10.1111/j.1872-034X.2010.00712.x
  • He D-K, Shao Y-R, Zhang L, Shen J, Zhong ZY, Wang J, Xu G. Adenovirus-delivered angiopoietin-1 suppresses NF-κB and p38 MAPK and attenuates inflammatory responses in phosgene-induced acute lung injury. Inhal. Toxicol. 2014; 26(3):185-92; PMID:24517841; http://dx.doi.org/10.3109/08958378.2013.872213
  • Aurandt J, Li W, Guan K-L. Semaphorin 4D activates the MAPK pathway downstream of plexin-B1. Biochem. J. 2006; 394(Pt 2):459-64; PMID:16187944; http://dx.doi.org/10.1042/BJ20051123
  • Pasterkamp RJ, Peschon JJ, Spriggs MK, Kolodkin AL. Semaphorin 7A promotes axon outgrowth through integrins and MAPKs. Nature 2003; 424(6947):398-405; PMID:12879062; http://dx.doi.org/10.1038/nature01790
  • López-Carballo G, Moreno L, Masiá S, Pérez P, Barettino D. Activation of the phosphatidylinositol 3-kinase/Akt signaling pathway by retinoic acid is required for neural differentiation of SH-SY5Y human neuroblastoma cells. J. Biol. Chem. 2002; 277(28):25297-304; http://dx.doi.org/10.1074/jbc.M201869200
  • Ohashi E, Kogai T, Kagechika H, Brent GA. Activation of the PI3 kinase pathway by retinoic acid mediates sodium/iodide symporter induction and iodide transport in MCF-7 breast cancer cells. Cancer Res. 2009; 69(8):3443-50; PMID:19351850; http://dx.doi.org/10.1158/0008-5472.CAN-08-3234
  • Roolf C, Krohn S, Kretzschmar C, et al. PI3K/Akt Signaling Interacts With Wnt/β-Catenin Signaling But Does Not Induce An Accumulation Of β-Catenin In The Nucleus Of Acute Lymphoblastic Leukemia Cell Lines. Blood 2013; 122(21):4886
  • Riobó NA, Lu K, Ai X, Haines GM, Emerson CP. Phosphoinositide 3-kinase and Akt are essential for Sonic Hedgehog signaling. Proc. Natl. Acad. Sci. U. S. A. 2006; 103(12):4505-10; http://dx.doi.org/10.1073/pnas.0504337103
  • Kim I, Kim HG, So JN, Kim JH, Kwak HJ, Koh GY. Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3′-Kinase/Akt signal transduction pathway. Circ. Res. 86(1):24-9; PMID:10625301; http://dx.doi.org/10.1161/01.RES.86.1.24
  • Yuan HT, Khankin EV, Karumanchi SA, Parikh SM. Angiopoietin 2 is a partial agonist/antagonist of Tie2 signaling in the endothelium. Mol. Cell. Biol. 2009; 29(8):2011-22; PMID:19223473; http://dx.doi.org/10.1128/MCB.01472-08
  • Pasterkamp RJ. Semaphorins: receptor and intracellular mechanisms. Adv. Exp. Med. Biol. 2007; 600:38-51; PMID:17607945; http://dx.doi.org/10.1007/978-0-387-70956-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.