4,934
Views
73
CrossRef citations to date
0
Altmetric
Review

Blood brain barrier: An overview on strategies in drug delivery, realistic in vitro modeling and in vivo live tracking

, &
Article: e1129476 | Received 03 Nov 2015, Accepted 04 Dec 2015, Published online: 03 Feb 2016

References

  • Risau W, Wolburg, H. Development of blood–brain barrier. Trends Neurosci 1990; 13:174-78; PMID:1693235; http://dx.doi.org/10.1016/0166-2236(90)90043-A
  • Abbott NJ, Romero IA. Transporting therapeutics across the blood–brain barrier. Mol Med Today 1996; 2:106-13
  • Abbott NJ. Astrocyte–endothelial interactions and blood–brain barrier permeability. J Anat 2002; 200:629-638; PMID:12162730; http://dx.doi.org/10.1046/j.1469-7580.2002.00064.x
  • Begley DJ, Brightman MW. Structural and functional aspects of the blood–brain barrier. Prog Drug Res 2003; 61:40-78
  • Wolburg H, Lippoldt A. Tight junctions of the blood–brain barrier: development, composition and regulation. Vasc Pharmacol 2002; 38:323-37; http://dx.doi.org/10.1016/S1537-1891(02)00200-8
  • Hawkins BT, Davis TP. The blood–brain barrier/ neurovascular unit in health and disease. Pharmacol Rev 2005; 57:173-85; PMID:15914466; http://dx.doi.org/10.1124/pr.57.2.4
  • Stenman JM, Rajagopal J, Carroll TJ, Ishibashi M, McMahon J, McMa-hon AP. Canonical Wnt signaling regulates organ-specific assemblyand differentiation of CNS vasculature. Science 2008; 322:1247-50; PMID:19023080; http://dx.doi.org/10.1126/science.1164594
  • Liebner S, Corada M, Bangsow T, Babbage J, Taddei A, Czupalla CJ, Reis M, Felici A, Wolburg H, Fruttiger M, et al. Wnt/beta-catenin signaling controls development of the blood–brain barrier. J Cell Biol 2008; 183:409-17; PMID:18955553; http://dx.doi.org/10.1083/jcb.200806024
  • Daneman R, Agalliu D, Zhou L, Kuhnert F, Kuo CJ, Barres BA. Wnt/b-cateninsignaling is required for CNS, but not non-CNS, angiogenesis. Proc Nat Acad Sci USA 2009; 106:641-6; http://dx.doi.org/10.1073/pnas.0805165106
  • Tam SJ, Richmond DL, Kaminker JS, Modrusan Z, Martin-McNulty B, Cao TC, Weimer RM, Carano RA, Bruggen N, Watts RJ. Death receptors DR6 and TROY regulate brain vascular development. Dev Cell 2012; 22:403-17
  • Wang Y, Rattner A, Zhou Y, Williams J, Smallwood PM, Nathans J. Norrin/Frizzled4 signaling in retinal vascular development and bloodbrain barrier plasticity. Cell 2012; 151:1332-44; PMID:23217714; http://dx.doi.org/10.1016/j.cell.2012.10.042
  • Ben-Zvi A, Lacoste B, Kur E, Andreone BJ, Mayshar Y, Yan H, Gu C. Mfsd2a is critical for the formation and function of the blood–brain barrier. Nature 2014; 22:507-11; http://dx.doi.org/10.1038/nature13324
  • Rodriguez A, Tatter SB, Debinski W. Neurosurgical techniques for disruption of the blood–brain barrier for glioblastoma treatment. Pharmaceutics 2015; 7:175-87; PMID:26247958; http://dx.doi.org/10.3390/pharmaceutics7030175
  • Atluri VSR, Hidalgo M, Samikkannu T, Kurapati KRV, Jayant RD, Sagar V, Nair MPN. Effect of human immunodeficiency virus on blood-brain barrier integrity and function: an update. Front Cell Neurosci 2015; 9:212; PMID:26113810; http://dx.doi.org/10.3389/fncel.2015.00212
  • Biancardi VC, Son SJ, Ahmadi S, Filosa JA, Stern JE. AngII-mediated BBB disruption in hypertension. Hypertension 2014; 63:572-79; PMID:24343120; http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.01743
  • Won S, Sayeed I, Peterson BL, Wali B, Kahn JS, Stein DG. Vitamin D prevents hypoxia/reoxygenation-induced blood-brain barrier disruption via Vitamin D receptor-mediated NF-kB signaling pathways. Plos One 2015; 10:1-17
  • Engelhardt S, Patkar S, Ogunshola OO. Cell-specific blood–brain barrier regulation in health and disease: a focus on hypoxia. Br J Pharmaco 2014; 171:1210-30; http://dx.doi.org/10.1111/bph.12489
  • Schreurs MPH, Hubel CA, Bernstein IM, Jeyabalan A, Cipolla MJ. Increased oxidized low-density lipoprotein causes blood-brain barrier disruption in early-onset preeclampsia through LOX-1. FASEB J 2012; 27:1254-63; http://dx.doi.org/10.1096/fj.12-222216
  • Domínguez A, Suárez-Merino B, de-Cerio FG. J. Nanoparticles and blood-brain barrier: the key to central nervous system diseases. Nanosci Nanotechnol 2014; 14: 766-79; http://dx.doi.org/10.1166/jnn.2014.9119
  • Aly AE-E, Waszczak BL. Intranasal gene delivery for treating Parkinson's disease: overcoming the blood–brain barrier. Expert Opin Drug Deliv 2015; 12:1-19; PMID:26289676; http://dx.doi.org/10.1517/17425247.2015.1069815
  • Covarrubias LS, Slosky LM, Thompson BJ, Davis TP, Ronaldson PT. Transporters at CNS barrier sites: obstacles or opportunities for drug delivery? Curr Pharm Des 2014; 20:1422-49; PMID:23789948; http://dx.doi.org/10.2174/13816128113199990463
  • McCall RL, Cacaccio J, Wrabel E, Schwartz ME, Coleman TP, Sirianni RW. Pathogen-inspired drug delivery to the central nervous system, Tissue Barriers 2014; 2:e944449; PMID:25610755; http://dx.doi.org/10.4161/21688362.2014.944449
  • Wilhelm I, Krizbai IA. In vitro models of the blood−brain barrier for the study of drug delivery to the brain. Mol Pharm 2014; 11:1949-63; http://dx.doi.org/10.1021/mp500046f
  • Bobilya DJ. A model for transport studies of the blood–brain barrier. Methods Mol Biol 2010; 637:149-63; PMID:20419434; http://dx.doi.org/10.1007/978-1-60761-700-6_8
  • DiL,   (ed.), Kerns EH (ed.). Blood-brain barrier in drug discovery: optimizing brain exposure of CNS drugs and minimizing brain side effects for peripheral drugs. New Jersey: John Wiley & Sons, 2015:167-379.
  • Burgess A, Hynynen K. Noninvasive and targeted drug delivery to the brain using focused ultrasound. ACS Chem Neurosci 2013; 4:519−26; PMID:23379618; http://dx.doi.org/10.1021/cn300191b
  • Costas EP, Fenton EY, Caruncho HJ. Reelin expression in brain endothelial cells: an electron microscopy study. BMC Neurosci 2015; 16:1-8; PMID:25655275; http://dx.doi.org/10.1186/s12868-015-0140-z
  • Salsano E, Marotta G, Manfredi V, Giovagnoli AR, Farina L, Savoiardo M, Pareyson D, Benti R, Uziel G. Brain fluorodeoxyglucose PET in adrenoleukodystrophy. Neurology 2014; 83:981-89; PMID:25098542; http://dx.doi.org/10.1212/WNL.0000000000000770
  • Chao F, Shen Y, Zhang H, Tian M. Multimodality molecular imaging of stem cells therapy for stroke. Bio Med Res Int 2013; 2013:1-16
  • Yan H, Wang L, Wang J, Weng X, Lei H, Wang X, Jiang L, Zhu J, Lu W, Wei X, Li C. Two-order targeted brain tumor imaging by using an optical/paramagnetic nanoprobe across the blood brain barrier. ACS Nano 2012; 6:410-420; PMID:22148835; http://dx.doi.org/10.1021/nn203749v
  • Adanyeguh IM, Rinaldi D, Henry PG, Caillet S, Valabregue R, Durr A, Mochel F. Triheptanoin improves brain energy metabolism in patients with Huntington disease. Neurology 2015; 84:490-5; PMID:25568297; http://dx.doi.org/10.1212/WNL.0000000000001214
  • Stewart PA, Wiley MJ. Developing nervous tissue induces formation of blood–brain barrier characteristics in invading endothelial cells: a study using quail–chick transplantation chimeras. Dev Bio 1981; 84:183-92; http://dx.doi.org/10.1016/0012-1606(81)90382-1
  • Olsson Y, Klatzo I, Sourander P, Steinwall O. Blood–brain barrier to albumin in embryonic new born and adult rats. Acta Neuropathol 1968; 10:117-22; PMID:5707962; http://dx.doi.org/10.1007/BF00691305
  • Tauc M, Vignon X, Bouchaud C. Evidence for the effectiveness of the blood–CSFbarrier in the fetal rat choroid plexus. A freeze-fracture and peroxidase diffusion study. Tissue Cell 1984; 16:65-74; PMID:6701893; http://dx.doi.org/10.1016/0040-8166(84)90019-3
  • Saunders NR. Development of the blood–brain barrier to macromolecules. In: Segal MB, ed. Barriers fluids eye brain. London: Macmillan Press; 1992.
  • Moos T, Møllgård K. Cerebrovascular permeability to azo dyes and plasma proteins in rodents of different ages. Neuropathol Appl Neurobiol 1993; 19:120-7; PMID:8316332; http://dx.doi.org/10.1111/j.1365-2990.1993.tb00416.x
  • Keep RF, Ennis SR, Beer ME, Betz AL. Developmental changes in blood–brainbarrier potassium permeability in the rat: relation to brain growth. J Physiol 1995; 488(Pt 2):439-48; PMID:8568682; http://dx.doi.org/10.1113/jphysiol.1995.sp020978
  • Saunders NR, Knott GW, Dziegielewska KM. Barriers in the immature brain. Cell Mol Neurobiol 2000; 20:29-40; PMID:10690500; http://dx.doi.org/10.1023/A:1006991809927
  • Liebner S, Plate KH. Differentiation of the brain vasculature: the answer came blowing by the Wnt. J Angiogenes Res 2010; 2:1
  • Virgintino D, Errede M, Robertson D, Capobianco C, Girolamo F, Vimercati A, Bertossi M, Roncali L. Immunolocalization of tight junction proteins in the adult and developing human brain. Histochem Cell Biol 2004; 122:51-9; PMID:15221411; http://dx.doi.org/10.1007/s00418-004-0665-1
  • Grontoft O. Intracranial haemorrhage and blood–brain barrier problems in the new-born; a pathologico-anatomical and experimental investigation. Acta Pathol Microbiol Scand Suppl 1954; 8:100-9
  • Hartmann C, Zozulya A, Wegener J, Galla HJ. The impact of glia-derived extracellular matrices on the barrier function of cerebralendothelial cells: an in vitro study. Exp Cell Res 2007; 313:1318-25; PMID:17346702; http://dx.doi.org/10.1016/j.yexcr.2007.01.024
  • Serlin Y, Shelef I, Knyazer B, Friedman A. Anatomy and physiology of the blood–brain barrier. Semin Cell Dev Biol 2015; 38:2-6; http://dx.doi.org/10.1016/j.semcdb.2015.01.002
  • Raab S, Beck H, Gaumann A, Yuce A, Gerber HP, Plate K, Hammes HP, Ferrara N, Breier G. Impaired brain angiogenesis and neuronal apoptosis induced by conditional homozygous inactivation of vascular endothelial growth factor. Thromb Haemost 2004; 91:595-605; PMID:14983237
  • Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 2003; 161: 1163-77; PMID:12810700; http://dx.doi.org/10.1083/jcb.200302047
  • Abbott NJ. Anatomy and physiology of the blood–brain barriers. In: Udenaes M, de Lange ECM, Thorne RG, editors. Drug Delivery to the Brain SE – 1, vol. 10. New York: Springer; 2014. pp. 3-21.
  • Nienke R. Wevers NR, E. de Vries H. Morphogens and blood-brain barrier function in health and disease. Tissue Barriers 2015
  • Gu C, Rodriguez ER, Reimert DV, Shu T, Fritzsch B, Richards LJ, Kolodkin AL, Ginty DD. Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Dev Cell 2003; 5:45-57; PMID:12852851; http://dx.doi.org/10.1016/S1534-5807(03)00169-2
  • Alvarez JI, Devillers AD, Kebir H, Ifergan I, Fabre PJ, Terouz S, Sabbagh M, Wosik K, Bourbonnière L, Bernard M et al. The Hedgehog pathway promotes blood–brain barrier integrityand CNS immune quiescence. Science 2011; 334:1727-31; PMID:22144466; http://dx.doi.org/10.1126/science.1206936
  • Risau W, Hallmann R, Albrecht U. Differentiation dependent expression of proteins in brain endothelium during development of the blood brain barrier. Dev Biol 1986; 117:537-45; PMID:2875908; http://dx.doi.org/10.1016/0012-1606(86)90321-0
  • Ek CJ, Dziegielewska KM, Habgood MD, Saunders NR. Barriers in the developing brain and Neurotoxicology. Neurotoxicology 2012; 33:586-604; PMID:22198708; http://dx.doi.org/10.1016/j.neuro.2011.12.009
  • Reyahi A, Nik AM, Ghiami M, Linde AG, Pontén F, Johansson BR, Carlsson P. Foxf2 is required for brain pericyte differentiationand development and maintenance of the blood-brain barrier. Dev Cell 2015; 6:19-32; http://dx.doi.org/10.1016/j.devcel.2015.05.008
  • Mizee MR, de Vries HE. Blood-brain barrier regulation. Tissue Barriers 2015; 1:5, e26882; http://dx.doi.org/10.4161/tisb.26882
  • Abbott NJ. Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int 2004; 45:545-52; PMID:15186921; http://dx.doi.org/10.1016/j.neuint.2003.11.006
  • Nag S, David JB. Blood Brain Barrier, Exchange of metabolites and gases. In Kalimo H, editor, Pathology and Genetics: Cerebrovascular Diseases. Basel: ISN Neuropath Press. 2005. p.22-29.
  • Brown RC, Mark KS, Egleton RD, Davis TP. Protection against hypoxia-induced blood-brain barrier disruption: changes in intracellular calcium. Am J Physiol Cell Physiol 2004; 286:C1045-C1052; PMID:15075203; http://dx.doi.org/10.1152/ajpcell.00360.2003
  • Cserr H, Cooper DN, Suri PK, Patlak CS. Efflux of radiolabeled polyethylene glycol and albumin from rat brain. Am J Physiol 1981; 240:F319-F328; PMID:7223889
  • Cserr HF, Patlak CS. Secretion and bulk flow of interstitial fluid. In: Bradbury MWB (Ed.), Physiology and Pharmacology of the Blood–Brain Barrier. Heidelberg: Springer 1992; pp.245-61.
  • Dolman D, Drndarski S, Abbott NJ, Rattray M. Induction of aquaporin 1 but not aquaporin 4 messenger RNA in rat primary brain microvessel endothelial cells in culture. J Neurochem 2005; 93:825-33; PMID:15857386; http://dx.doi.org/10.1111/j.1471-4159.2005.03111.x
  • Milhorat TH, Hammock MK, Fenstermacher JD, Levin VA. Cerebrospinal fluid production by the choroid plexus and brain. Science 1971; 173:330-32; PMID:4997797; http://dx.doi.org/10.1126/science.173.3994.330
  • Davson H, Segal MB. Physiology of the CSF and blood–brain barriers. Boca Raton, USA: CRC Press. 1995.
  • Abbott NJ, Rönnbäck L, Hansson E. Astrocyte–endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 2006; 7:41-53; PMID:16371949; http://dx.doi.org/10.1038/nrn1824
  • Kandel ER, Schwartz JH, Jessel TM. Principles of Neural Science, 4th Ed. New York: McGraw-Hill, 2000. pp.1294.
  • Hammarlund-Udenaes M, Fridén M, Syvanen S, Gupta A. On the rate and extent of drug delivery to the brain. Pharm Res 2008; 25:1737-50; PMID:18058202; http://dx.doi.org/10.1007/s11095-007-9502-2
  • Wong AD, Ye M, Levy AF, Rothstein JD, Bergles DE, Searson PC. The blood-brain barrier: an engineering perspective. Front Neuroeng 2013; 6:1-22; PMID:23443302; http://dx.doi.org/10.3389/fneng.2013.00007
  • Nicholson C, Zare PK, Tao L. Brain extracellular space as a diffusion barrier. Comput Vis Sci 2011; 14:309-25; PMID:23172993; http://dx.doi.org/10.1007/s00791-012-0185-9
  • Deo AK, Theil FP, Nicolas JM. Confounding parameters in preclinical assessment of blood-brain barrier permeation: an overview with emphasis on species differences and effect of disease states. Mol Pharm 2013; 10:1581-95; PMID:23256608; http://dx.doi.org/10.1021/mp300570z
  • Popescu BO, Toescu EC, Popescu LM, Bajenaru O, Muresanu DF, Schultzberg M, Bogdanovic N. Blood-brain barrier alterations in ageing and dementia. J Neurol Sci 2009; 283:99-106
  • Daneman R, Zhou L, Kebede AA, Barres BA. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 2010; 468:562-6; PMID:20944625; http://dx.doi.org/10.1038/nature09513
  • Dorovini-Zis K., ed. The blood-brain barrier in health and disease, volume 2: pathophysiology and pathology. Boca Raton: CRC press, 2015; 5-6
  • Zoppo GJ, Poeck K, Pessin MS, Wolpert SM, Furlan AJ, Ferbert A, Alberts MJ, Zivin JA, Wechsler L, Busse O, et al. Recombinant tissue plasminogen activator in acute thrombotic and embolic stroke. Ann Neurol 1992; 32:8-86
  • Wolka AM, Huber JD, Davis TP. Pain and the blood-brain barrier: obstacles to drug delivery. Adv Drug Deliv Rev 2003; 55:987-1006; PMID:12935941; http://dx.doi.org/10.1016/S0169-409X(03)00100-5
  • Nishioku T, Furusho K, Tomita A, Ohishi H, Dohgu S, Shuto H, Yamauchi A, Kataoka Y. Potential role for S100A4 in the disruption of the blood-brain barrier in collagen-induced arthritic mice, an animal model of rheumatoid arthritis. Neuroscience 2011; 189:286-92; PMID:21627981; http://dx.doi.org/10.1016/j.neuroscience.2011.05.044
  • Starr JM, Wardlaw J, Ferguson K, MacLullich A, Deary IJ, Marshall I. Increased blood-brain barrier permeability in type II diabetes demonstrated by gadolinium magnetic resonance imaging. J Neurol, Neurosurg Psychiat 2003; 74:70-6; PMID:12486269; http://dx.doi.org/10.1136/jnnp.74.1.70
  • Nguyen JH. Blood-brain barrier in acute liver failure. Neurochem Int 2012; 60:676-83; PMID:22100566; http://dx.doi.org/10.1016/j.neuint.2011.10.012
  • Cipolla MJ, Sweet JG, Chan SL. Cerebral vascular adaptation to pregnancy and its role in the neurological complications of eclampsia. J Appl Physiol 2011; 110:329-39; PMID:21071591; http://dx.doi.org/10.1152/japplphysiol.01159.2010
  • Tang JP, Rakhit A, Douglas FL, Melethil S. Effect of chronic hypertension on the blood-brain barrier permeability of libenzapril. Pharm Res 1992; 9:236-43; PMID:1553348; http://dx.doi.org/10.1023/A:1018945608888
  • Ong WY, Halliwell B. Iron, atherosclerosis, and neurodegeneration: a key role for cholesterol in promoting iron-dependent oxidative damage? Ann NY Acad Sci 2004; 1012:51-64; http://dx.doi.org/10.1196/annals.1306.005
  • Patel JP and Frey BN. Disruption in the blood-brain barrier: the missing link between brain and body inflammation in bipolar disorder? Neural Plast 2015; 2015:1-12.
  • Fonseca ACC, Matias D, Garcia C, Amaral R, Geraldo LH, Freitas C, Lima FRS. The impact of microglial activation on blood-brain barrier in brain diseases. Front Cell Neurosci 2014; 8:362
  • Wen J, Doerner J, Weidenheim K, Xia Y, Stock A, Michaelson JS, Baruch K, Deczkowska A, Gulinello M, Schwartz M, Burkly LC, Putterman C. TNF-like weak inducer of apoptosis promotes blood brain barrier disruption and increases neuronal cell death in MRL/lpr mice. J Autoimmun 2015; 60:40-50; PMID:25911200; http://dx.doi.org/10.1016/j.jaut.2015.03.005
  • Gorter JA, van Vliet EA, Aronica E. Status epilepticus, blood–brain barrier disruption, inflammation, and epileptogenesis. Epilepsy Behav 2015; 49:13-6; PMID:25958228; http://dx.doi.org/10.1016/j.yebeh.2015.04.047
  • Paul R, Lorenzl S, Koedel U, Sporer B, Vogel U, Frosch M, Pfister HW. Matrix metalloproteinases contribute to the blood-brain barrier disruption during bacterial meningitis. Ann Neurol 1998; 44:592-600; PMID:9778257; http://dx.doi.org/10.1002/ana.410440404
  • Kim BJ, Hancock BM, Bermudez A, Cid ND, Reyes E, Sorge NM, Lauth X, Smurthwaite CA, Hilton BJ, Stotland A, Banerjee A, Buchanan J, Wolkowicz R, Traver D, Doran KS. Bacterial induction of Snail1 contributes to blood-brain barrier disruption. J Clin Invest 2015; 125:2473-83; http://dx.doi.org/10.1172/JCI74159
  • Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med 2013; 19: 1584-96; PMID:24309662; http://dx.doi.org/10.1038/nm.3407
  • Tosi G, Costantino L, Ruozi B, Forni F, Vandelli MA. Polymeric nanoparticles for the drug delivery to the central nervous system. Exp OpinDrug Deliv 2008; 5:155-74; http://dx.doi.org/10.1517/17425247.5.2.155
  • Montenegro L, Trapani A, Latrofa A, Puglisi G. In vitro evaluation on a model of blood brain barrier of idebenone loaded solid lipid nanoparticles. J Nanosci Nanotechnol 2012; 12:330-7; PMID:22523983; http://dx.doi.org/10.1166/jnn.2012.5174
  • Re F, Cambianica I, Zona C, Sesana S, Gregori M, Rigolio R, Ferla BL, Nicotra F, Forloni G, Cagnotto A. Functionalization of liposomes with ApoEderived peptides at different density affects cellular uptake and drug transport across a blood–brain barrier model. Nanomedicine 2011; 7:551-9; PMID:21658472; http://dx.doi.org/10.1016/j.nano.2011.05.004
  • Yemisci M, GürsoyÖzdemir Y, Caban S, Bodur E, Capan Y, Dalkara T. Transport of a caspase inhibitoracross the blood-brain barrier by chitosan nanoparticles. Methods Enzymol 2012; 508:253-69; PMID:22449930; http://dx.doi.org/10.1016/B978-0-12-391860-4.00013-6
  • Beg S, Samad A, Alam MI, Nazish I. Dendrimers as novel systems for delivery of neuropharmaceuticals to the brain. CNS Neurol Disord Drug Targets 2011; 10:576-88; PMID:21631401; http://dx.doi.org/10.2174/187152711796235023
  • Li Y, He H, Jia X, Lu WL, Lou J, Wei Y.A dual targeting nanocarrier based on poly(amidoamine) dendrimers conjugated with transferring and tamoxifen for treating brain gliomas. Biomaterials 2012; 33:3899-908; PMID:22364698; http://dx.doi.org/10.1016/j.biomaterials.2012.02.004
  • Vinogradov SV, Poluektova LY, Makarov E, Gerson T, Senanayake MT. NanoNRTIs: efficient inhibitors of HIV type1 in macrophages with a reduced mitochondrial toxicity. Antivir Chem Chemother 2010; 21:1-14; PMID:21045256; http://dx.doi.org/10.3851/IMP1680
  • Chen YC, Hsieh WY, Lee WF, Zeng DT. Effects of surface modification of PLGA–PEG–PLGA nanoparticles on loperamide delivery efficiency across the blood–brain barrier. J Biomater Appl 2011; 27:909-22; PMID:22207601; http://dx.doi.org/10.1177/0885328211429495
  • Silva AC, Oliveira TR, Mamani JB, Malheiros SM, Malavolta L, Pavon LF, Sibov TT, Amaro E Jr, Tannus A, Vidoto EL, et al. Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment. Int J Nanomed 2011; 6:591-603; PMID:21674016
  • Takagi H, Azuma K, Tsuka T. Antitumor effects of hightemperature hyperthermia on a glioma rat model. Oncol Lett 2014; 7:1007-10; PMID:24944659
  • Titsworth W, Murad GJ, Hoh BL, Rahman M. Fighting fire with fire: the revival of thermotherapy for gliomas. Anticancer Res 2014; 34:565-574; PMID:24510985
  • Treat LH, McDannold N, Vykhodtseva N, Zhang Y, Tam K, Hynynen K. Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. Int J Cancer 2007; 121:901-7; PMID:17437269; http://dx.doi.org/10.1002/ijc.22732
  • Wang DC, Zhang Y, Chen HY, Li XL, Qin LJ, Li YJ, Zhang HY, Shuo Wang S. Hyperthermia promotes apoptosis and suppresses invasion in C6 rat glioma cells. Asian Pacific J Cancer Prev 2012; 13:3239-45; http://dx.doi.org/10.7314/APJCP.2012.13.7.3239
  • Kiessling M, Herchenhan E, Eggert HR. Cerebrovascular and metabolic effects on the rat brain of focal Nd:YAG laser irradiation. J Neurosurg 1990; 73:909-17; PMID:2230973; http://dx.doi.org/10.3171/jns.1990.73.6.0909
  • Choi M, Ku T, Chong K, Yoon J, Choi C. Minimally invasive molecular delivery into the brain using optical modulation of vascular permeability. Proc Natl Acad Sci USA 2011; 108: 9256-61; http://dx.doi.org/10.1073/pnas.1018790108
  • Tabatabaei SN, Girouard H, Carret AS, Martel S. Remote control of the permeability of the blood–brain barrier by magnetic heating of nanoparticles: A proof of concept for brain drug delivery. J Control Rel 2015; 206: 49-57; PMID:25724273; http://dx.doi.org/10.1016/j.jconrel.2015.02.027
  • Descamps L, Dehouck MP, Torpier G, Cecchelli R. Receptor-mediated transcytosis of transferring through blood-brain barrier endothelial cells. Am J Physiol 1996; 270:1149-58;
  • Dehouck B, Fenart L, Dehouck MP, Pierce A, Torpier G, Cecchelli R. A new function for the LDL receptor: transcytosis of LDL across the blood-brain barrier. J Cell Biol 1997; 138:877-89; PMID:9265653; http://dx.doi.org/10.1083/jcb.138.4.877
  • Candela P, Gosselet F, Miller F, Scherrer VB, Torpier G, Cecchelli R, Fenart L. Physiological pathway for low-density lipoproteins across the blood-brain barrier: transcytosis through brain capillary endothelial cells in vitro. Endothelium 2008; 15:254-64; PMID:19065317; http://dx.doi.org/10.1080/10623320802487759
  • Chung NS, Wasan KM. Potential role of the low-density lipoprotein receptor family as mediators of cellular drug uptake. Adv Drug Deliv Rev 2004; 56:1315-34; PMID:15109771; http://dx.doi.org/10.1016/j.addr.2003.12.003
  • Gao X, Qian J, Zheng S, Changyi Y, Zhang J, Ju S, Zhu J, Li C. Overcoming the blood brain barrier for delivering drugs into the brain by using adenosine receptor nanoagonist. ACS Nano 2014; 8:3678-89; PMID:24673594; http://dx.doi.org/10.1021/nn5003375
  • Sebbage V. Cell-penetrating peptides and their therapeutic applications. Biosci Horizons 2009; 2:64-72; http://dx.doi.org/10.1093/biohorizons/hzp001
  • Zou LL, Ma JL, Wang T, Yang TB, Liu CB. Cell-penetrating peptide-mediated therapeutic molecule delivery into the central nervous system. Curr Neuropharmacol 2013; 11:197-208; PMID:23997754; http://dx.doi.org/10.2174/1570159X11311020006
  • Roger M, Clavreul A, Julienne MCV, Passirani C, Sindji L, Schiller P, Menei CM, Menei P. Mesenchymal stem cells as cellular vehicles for delivery of nanoparticles to brain tumors. Biomaterials 2010; 31:8393-401; PMID:20688391; http://dx.doi.org/10.1016/j.biomaterials.2010.07.048
  • Fan C, Wang D, Zhang Q, Zhou J. Migration capacity of human umbilical cord mesenchymal stem cells towards glioma in vivo. Neural Regen Res 2013; 8:2093-102; PMID:25206518
  • Ebrahimi A, Lalvand N. Drug delivery using genetically modified mesenchymal stem cells: a promising targeted-delivery method. Hyg J Drugs Med 2013; 5:90-104
  • Gonda I. Systemic delivery of drugs to humans via inhalation. J Aerosol Med 2006, 19:47-53; PMID:16551214; http://dx.doi.org/10.1089/jam.2006.19.47
  • Ewart W. The use of creosoted oil for the expulsion of tracheal false membranes after tracheotomy; and of intranasal injections of oil in various affection. Br Med J 1898; 1:1381-83; PMID:20757845; http://dx.doi.org/10.1136/bmj.1.1952.1381
  • Wu S. Intranasal delivery of neural stem cells: a CNS specific, non-invasive cell-based therapy for experimental autoimmune encephalomyelitis. J Clin Cell Immunol 2013; 1:4; PMID:24244890
  • Ueno H, Mizuta M, Shiiya T, Tsuchimochi W, Noma K, Nakashima N, Fujihara M, Nakazato M. Exploratory trial of intranasal administration of glucagon-like Peptide-1 in Japanese patients with type 2 diabetes. Diabetes Care 2014; 37:2024-27; PMID:24667460; http://dx.doi.org/10.2337/dc13-0690
  • Rapoport SI. Osmotic opening of the blood-brain barrier: principles, mechanism, and therapeutic applications. Cell. Mol. Neurol. 2000; 20:217-30; http://dx.doi.org/10.1023/A:1007049806660
  • Miyake MM, Bleier BS. Bypassing the blood–brian barrier using established skull base reconstruction techniques. WJO 2015; 1:11-16
  • Griep LM, Wolbers F, Wagenaar B, Braak PM, Weksler BB, Romero IA, Couraud PO, Vermes I, Meer AD, Berg A. BBB on chip: microfluidic platform to mechanically and biochemically modulate blood-brain barrier function. Biomed. Microdevices 2013; 15:145-50; http://dx.doi.org/10.1007/s10544-012-9699-7
  • Booth R, Kim H. Characterization of a microfluidic in vitro model of the blood brain barrier (mBBB). Lab Chip 2012; 12:1784-92; PMID:22422217; http://dx.doi.org/10.1039/c2lc40094d
  • Shayan G, Choi YS, Shusta EV, Shuler ML, Lee KH. Murine in vitro model of the blood-brain barrier for evaluating drug transport. Eur J Pharm Sci 2011; 42:148-55; PMID:21078386; http://dx.doi.org/10.1016/j.ejps.2010.11.005
  • Shayan G, Shuler ML, Lee KH. The effect of astrocytes on the induction of barrier properties in aortic endothelial cells. Biotechnol Prog 2011; 27:1137-45; PMID:21626719; http://dx.doi.org/10.1002/btpr.620
  • Molino Y, Jabès F, Lacassagne E, Gaudin N, Khrestchatisky M. Setting-up an in vitro model of rat blood-brain barrier (BBB): afocus on BBB impermeability and receptor-mediated transport. J Vis Exp 2014; 88:512-78
  • Achyuta AKH, Conway AJ, Crouse RB, Bannister EC, Lee RN, Katnik CP, Behensky AA, Cuevas J, Sundaram SS. A modular approach to create a neurovascular unit-on-a-chip. Lab Chip 2013; 13:542-53; PMID:23108480; http://dx.doi.org/10.1039/C2LC41033H
  • Shi M, Majumdar D, Gao Y. Brewer BM, Goodwin CR, McLean JA, Li D, Webb DJ. Glia co-culture with neurons in microfluidic platforms promotes the formation and stabilization of synaptic contacts. Lab Chip 2013; 13:3008-21; PMID:23736663; http://dx.doi.org/10.1039/c3lc50249j
  • Park HS, Liu S, McDonald J, Thakor N, Yang IH. Neuromuscular junction in a microfluidic device. Conf IEEE Eng Med Biol Soc 2013:2833-35
  • Ziegler L, Grigoryan S, Yang IH, Thakor, NV, Goldstein RS. Efficient generation of schwann cells from human embryonic stem cell-derived neurospheres. Stem Cell Rev 2011; 7:394-403; PMID:21052870; http://dx.doi.org/10.1007/s12015-010-9198-2
  • Kunze A, Lengacher S, Dirren E, Aebischer P, Magistrettic PJ, Renaud P. Astrocyte-neuron co-culture on microchips based on the model of SOD mutation to mimic ALS. Integr Biol (Camb) 2013; 5:964-75; PMID:23695230; http://dx.doi.org/10.1039/c3ib40022k
  • Roe K, Orillo B, Verma S. West nile virus-induced cell adhesion molecules on human brain microvascular endothelial cells regulate leukocyte adhesion and modulate permeability of the in vitro blood-brain barrier model. Plos One 2014; 9:1-12; http://dx.doi.org/10.1371/journal.pone.0102598
  • Xiong X, Sun Y, Sattiraju A, Jung Y, Mintz A, Hayasaka S, Li KCP. Remote spatiotemporally controlled and biologically selective permeabilization of blood-brain barrier. J Control Release 2015; 217:113-20; PMID:26334482
  • Cucullo L, Marchi N, Hossain M, Janigro D. A dynamic in vitro BBB model for the study of immune cell trafficking into the central nervous system. J Cereb Blood Flow Metab 2011; 31:767-77; PMID:20842162
  • Czupalla CJ, Liebner S, Devraj K. In vitro models of the blood-brain barrier. Methods Mol Biol 2014; 1135:415-37; PMID:24510883
  • Wolff A, Antfolk M, Brodin B, Tenje M. In vitro blood–brain barrier models—An overview of established models and new microfluidic approaches. J Pharm Sci 2015; 104:2727-46.
  • Wager TT, Liras JL, Mente S, Trapa P. Strategies to minimize CNS toxicity: in vitro high throughput assays and computational modeling. Expert Opin Drug Metab Toxicol 2012;8: 531-42.
  • Ruck T, Bittner S, Meuth SG. Blood brain barrier modeling: challenges and perspectives. Neural Regen Res 2015;10:889-91.
  • Prager O, Chassidim Y, Klein C, Levi H, Shelef I, Friedman A. Dynamic in vivo imaging of cerebral blood flow and blood–brain barrier permeability. Neuroimage 2010; 49:337-44.
  • Greenwood J, Adu J, Davey AJ, Abbott NJ, Bradbury MW. The effect of bile salts on the permeability and ultrastructure of the perfused, energy-depleted, rat blood–brain barrier. Off J Int Soc Cereb Blood Flow Metabol 1991; 11:644-54.
  • Watson BD, Dietrich WD, Prado R, Ginsberg MD. Argon laser-induced arterial photo thrombosis. J Neurosurg 1987; 66:748-54.
  • Dunn AK. Laser speckle contrast imaging of cerebral blood flow. Ann Biomed Eng 2012; 40:367-77.
  • Wunder A, Klohs J, Dirnagl U. Non-invasive visualization of CNS inflammation with nuclear and optical imaging. Neuroscience 2009; 158:1161-73.
  • Pike VW. PET radiotracers: crossing the blood-brain barrier and surviving metabolism. Trends Pharmacol Sci 2009; 30:431-40.
  • Wolak DJ, Pizzo ME, Thorne RG. Probing the extracellular diffusion of antibodies in brain using in vivo integrative optical imaging and ex vivo fluorescence imaging. J Control Release 2015; 197:78-86.
  • Josserand V, Pélerin H, de Bruin B, Jego B, Kuhnast B, Hinnen F, Ducongé F, Boisgard R, Beuvon F, Chassoux F, et al. Evaluation of drug penetration into the brain: a double study by in vivo imaging with positron emission tomography and using an in vitro model of the human blood-brain barrier. J Pharmacol Exp Ther 2006; 316:79-86.
  • Wolak DJ, Thorne RG. Diffusion of macromolecules in the brain: implications for drug delivery. Mol Pharm 2013; 10:1492-1504.
  • Sykova E, Nicholson C. Diffusion in brain extracellular space. Physiol Rev 2008; 88:1277-1340.; http://dx.doi.org/10.1152/physrev.00027.2007
  • Nicholson C, Tao L. Hindered diffusion of high molecular weight compounds in brain extracellular microenvironment measured with integrative optical imaging. Biophys J 1993; 65:2277-90.
  • Thorne RG, Hrabetova S, Nicholson C. Diffusion of epidermal growth factor in rat brain extracellular space measured by integrative optical imaging. J Neurophysiol 2004; 92:3471-81; http://dx.doi.org/10.1152/jn.00352.2004
  • Aswendt M, Henn N, Michalk S, Schneider G, Steiner MS, Bissa U, Dose C, Hoehn M. Novel bimodal iron oxide particles for efficient tracking of human neural stem cells in vivo. Nanomedicine 2015; 10; 16:2499-512.; http://dx.doi.org/10.2217/nnm.15.94
  • Yin Y, Zhou X, Guan X, Liu Y, Jiang C, Liu J. In vivo tracking of human adipose-derived stem cells labeled with ferumoxytol in rats with middle cerebral artery occlusion by magnetic resonance imaging. Neural Regener Res 2015; 10:909-15; http://dx.doi.org/10.4103/1673-5374.158355

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.