19,592
Views
211
CrossRef citations to date
0
Altmetric
Review

Microfluidic organ-on-chip technology for blood-brain barrier research

, , , &
Article: e1142493 | Received 27 Jul 2015, Accepted 02 Jan 2016, Published online: 16 Mar 2016

References

  • Abbott NJ. Blood–brain barrier structure and function and the challenges for CNS drug delivery. J Inherited Metab dis 2013; 36:437-49; PMID:23609350; http://dx.doi.org/10.1007/s10545-013-9608-0
  • Serlin Y, Shelef I, Knyazer B, Friedman A. Anatomy and physiology of the blood–brain barrier. Seminars Cell Dev Biol 2015; 38:2-6; http://dx.doi.org/10.1016/j.semcdb.2015.01.002
  • Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2005; 2:3-14; PMID:15717053; http://dx.doi.org/10.1602/neurorx.2.1.3
  • Abbott NJ, Rönnbäck L, Hansson E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 2006; 7:41-53; PMID:16371949; http://dx.doi.org/10.1038/nrn1824
  • Abbott NJ. Prediction of blood–brain barrier permeation in drug discovery from in vivo, in vitro and in silico models. Drug Discov Today 2004; 1:407-16; http://dx.doi.org/10.1016/j.ddtec.2004.11.014
  • Wolff A, Antfolk M, Brodin B, Tenje M. In Vitro blood-brain barrier models—an overview of established models and new microfluidic approaches. J Pharmaceutical Sci 2015; 104:2727-46; http://dx.doi.org/10.1002/jps.24329
  • Huh D, Torisawa YS, Hamilton GA, Kim HJ, Ingber DE. Microengineered physiological biomimicry: organs-on-chips. Lab chip 2012; 12:2156-64; PMID:22555377; http://dx.doi.org/10.1039/c2lc40089h
  • Perrin S. Preclinical research: Make mouse studies work. Nature 2014; 507:423-5; PMID:24678540; http://dx.doi.org/10.1038/507423a
  • Pamies D, Hartung T, Hogberg HT. Biological and medical applications of a brain-on-a-chip. Exp Biol Med 2014; 239:1096-107; http://dx.doi.org/10.1177/1535370214537738
  • Hackam DG. Translating animal research into clinical benefit. BMJ: Br Med J 2007; 334:163; http://dx.doi.org/10.1136/bmj.39104.362951.80
  • van der Worp HB, Howells DW, Sena ES, Porritt MJ, Rewell S, O'Collins V, Macleod MR. Can animal models of disease reliably inform human studies. PLoS Med 2010; 7:e1000245; PMID:20361020; http://dx.doi.org/10.1371/journal.pmed.1000245
  • Shanks N, Greek R, Greek J. Are animal models predictive for humans? Philosophy Ethics Humanities Med 2009; 4:2; http://dx.doi.org/10.1186/1747-5341-4-2
  • Perrin S. Preclinical research: Make mouse studies work. Nature 2014; 507:423-5; http://dx.doi.org/10.1038/507423a
  • Shawahna R, Declèves X, Scherrmann J-M. Hurdles with using in vitro models to predict human blood-brain barrier drug permeability: a special focus on transporters and metabolizing enzymes. Curr Drug Metab 2013; 14:120-36; PMID:23215812; http://dx.doi.org/10.2174/138920013804545232
  • Naik P, Cucullo L. In vitro blood–brain barrier models: Current and perspective technologies. J Pharmaceutical Sci 2012; 101:1337-54; http://dx.doi.org/10.1002/jps.23022
  • van der Meer AD, van den Berg A. Organs-on-chips: breaking the in vitro impasse. Integrative Biol 2012; 4:461-70; http://dx.doi.org/10.1039/c2ib00176d
  • Abbott NJ, Dolman DM, Yusof S, Reichel A. In Vitro Models of CNS Barriers. In: Hammarlund-Udenaes M, de Lange ECM, Thorne RG, eds. Drug Delivery to the Brain: Springer New York, 2014:163-97
  • Hatherell K, Couraud PO, Romero IA, Weksler B, Pilkington GJ. Development of a three-dimensional, all-human< i> in vitro model of the blood–brain barrier using mono-, co-, and tri-cultivation Transwell models. J Neurosci Methods 2011; 199:223-9; PMID:21609734; http://dx.doi.org/10.1016/j.jneumeth.2011.05.012
  • Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol 2014; 32:760-72; PMID:25093883; http://dx.doi.org/10.1038/nbt.2989
  • Moraes C, Mehta G, Lesher-Perez S, Takayama S. Organs-on-a-Chip: A Focus on Compartmentalized Microdevices. Annals Biomed Engineering 2012; 40:1211-27; http://dx.doi.org/10.1007/s10439-011-0455-6
  • Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science 2010; 328:1662-8; PMID:20576885; http://dx.doi.org/10.1126/science.1188302
  • Kim HJ, Huh D, Hamilton G, Ingber DE. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 2012; 12:2165-74; PMID:22434367; http://dx.doi.org/10.1039/c2lc40074j
  • Kim HJ, Ingber DE. Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integrative Biol 2013; 5:1130-40; PMID:23817533; http://dx.doi.org/10.1039/c3ib40126j
  • Westein E, van der Meer AD, Kuijpers MJE, Frimat JP, van den Berg A, Heemskerk JWM. Atherosclerotic geometries exacerbate pathological thrombus formation poststenosis in a von Willebrand factor-dependent manner. Proc Natl Acad Sci 2013; 110:1357-62; PMID:23288905; http://dx.doi.org/10.1073/pnas.1209905110
  • Nedergaard M. Garbage Truck of the Brain. Science (New York, NY) 2013; 340:1529-30; http://dx.doi.org/10.1126/science.1240514
  • Iliff JJ, Nedergaard M. Is there a cerebral lymphatic system? Stroke; J Cerebral Circulation 2013; 44:S93-S5; http://dx.doi.org/10.1161/STROKEAHA.112.678698
  • van der Meer AD, Wolbers F, Vermes I, van den Berg A. Blood-brain Barrier (BBB): An Overview of the Research of the Blood-brain Barrier Using Microfluidic Devices. In: van den Berg A, Segerink LI, eds. Microfluidics for Med Applications, 2014:40-56
  • Adriani G, Ma D, Pavesi A, Goh E, Kamm RD. A microfluidic model of the blood brain barrier. 4th THERMIS World Congress. Boston, USA: Tissue Engineering Part A, 2015:S40-S
  • Yeste J, Illa X, Guimerà A, Villa R. A novel strategy to monitor microfluidic in-vitro blood-brain barrier models using impedance spectroscopy. Bio-MEMS and Medical Microdevices II. Barcelona, Spain: SPIE Conference Proceedings, 2015:95180N-N-6
  • van der Helm MW, Odijk M, Frimat J-P, Eijkel JC, van den Berg A, Segerink LI. Simple and stable transendothelial electrical resistance measurements in organs-on-chips. The 19th International Conference on Miniaturized Systems for Chemistry and Life Sciences. Gyeongju, South Korea, 2015
  • Xu H, Li ZY, Yu Y, Qin JH. Microfluidic high-throughput 3D blood-brain barrier model in vitro for drug testing in brain tumor. The 19th International Conference on Miniaturized Systems for Chemistry and Life Sciences. Gyeongju, South Korea, 2015
  • Xu H, Zhang M, Wang L, Qin JH. Organ-on-a-chip for drug testing in brain diseases. The 19th International Conference on Miniaturized Systems for Chemistry and Life Sciences. Gyeongju, South Korea, 2015
  • Benson BL, Cotleur AC, Shimizu F, Takeshita Y, Winger RC, Huang A, Marsh G, Ligresti G, Muller WA, Kanda T, et al. Leukocyte-endothelial interactions at the blood-brain barrier studied in fully-human flow-based in vitro models incorporating microfluidics. 14th Annual World Preclinical Congress. Boston, USA, 2015
  • van der Meer AD, Ingber DE, Herland A. Blood brain barrier-on-chip. 14th Annual World Preclinical Congress, Boston, USA, 2015
  • Booth R, Kim H. Characterization of a microfluidic in vitro model of the blood-brain barrier (mu BBB). Lab Chip 2012; 12:1784-92; PMID:22422217; http://dx.doi.org/10.1039/c2lc40094d
  • Booth R, Kim H. Permeability Analysis of Neuroactive Drugs Through a Dynamic Microfluidic In Vitro Blood-Brain Barrier Model. Annals Biomed Engineering 2014; 42:2379-91; http://dx.doi.org/10.1007/s10439-014-1086-5
  • Wong AD, Ye M, Levy AF, Rothstein JD, Bergles DE, Searson PC. The blood-brain barrier: an engineering perspective. Frontiers Neuroengineering 2013; 6:7; http://dx.doi.org/10.3389/fneng.2013.00007
  • Desai SY, Marroni M, Cucullo L, Krizanac-Bengez L, Mayberg MR, Hossain MT, Grant GG, Janigro D. Mechanisms of endothelial survival under shear stress. Endothelium 2002; 9:89-102; PMID:12200960; http://dx.doi.org/10.1080/10623320212004
  • Yeon JH, Na D, Choi K, Ryu SW, Choi C, Park JK. Reliable permeability assay system in a microfluidic device mimicking cerebral vasculatures. Biomed Microdevices 2012; 14:1141-8; PMID:22821236; http://dx.doi.org/10.1007/s10544-012-9680-5
  • Griep LM, Wolbers F, de Wagenaar B, ter Braak PM, Weksler BB, Romero IA, Couraud PO, Vermes I, van der Meer AD, van den Berg A. BBB ON CHIP: microfluidic platform to mechanically and biochemically modulate blood-brain barrier function. Biomed Microdevices 2013; 15:145-50; PMID:22955726; http://dx.doi.org/10.1007/s10544-012-9699-7
  • Achyuta AKH, Conway AJ, Crouse RB, Bannister EC, Lee RN, Katnik CP, Behensky AA, Cuevas J, Sundaram SS. A modular approach to create a neurovascular unit-on-a-chip. Lab Chip 2013; 13:542-53; PMID:23108480; http://dx.doi.org/10.1039/C2LC41033H
  • Prabhakarpandian B, Shen MC, Nichols JB, Mills IR, Sidoryk-Wegrzynowicz M, Aschner M, Pant K. SyM-BBB: a microfluidic blood brain barrier model. Lab Chip 2013; 13:1093-101; PMID:23344641; http://dx.doi.org/10.1039/c2lc41208j
  • Deosarkar SP, Prabhakarpandian B, Wang B, Sheffield JB, Krynska B, Kiani MF. A Novel Dynamic Neonatal Blood-Brain Barrier on a Chip. PLoS One 2015; 10:e0142725; PMID:26555149; http://dx.doi.org/10.1371/journal.pone.0142725
  • Cho H, Seo JH, Wong KH, Terasaki Y, Park J, Bong K, Arai K, Lo EH, Irimia D. Three-Dimensional Blood-Brain Barrier Model for in vitro Studies of neurovascular pathology. Sci Rep 2015; 5:15222
  • Kim JA, Kim HN, Im S-K, Chung S, Kang JY, Choi N. Collagen-based brain microvasculature model in vitro using three-dimensional printed template. Biomicrofluidics 2015; 9:024115; PMID:25945141http://dx.doi.org/10.1063/1.4917508
  • Brown JA, Pensabene V, Markov DA, Allwardt V, Neely MD, Shi M, Britt CM, Hoilett OS, Yang Q, Brewer BM, et al. Recreating blood-brain barrier physiology and structure on chip: A novel neurovascular microfluidic bioreactor. Biomicrofluidics 2015; 9:054124; PMID:26576206; http://dx.doi.org/10.1063/1.4934713
  • Sellgren KL, Hawkins BT, Grego S. An optically transparent membrane supports shear stress studies in a three-dimensional microfluidic neurovascular unit model. Biomicrofluidics 2015; 9:061102; PMID:26594261; http://dx.doi.org/10.1063/1.4935594
  • Walter FR, Valkai S, Kincses A, Petneházi A, Czeller T, Veszelka S, Ormos P, Deli MA, Dér A. A versatile lab-on-a-chip tool for modeling biological barriers. Sensors Actuators B: Chem 2016; 222:1209-19; http://dx.doi.org/10.1016/j.snb.2015.07.110
  • Chaitanya GV, Cromer WE, Wells SR, Jennings MH, Couraud PO, Romero IA, Weksler B, Erdreich-Epstein A, Mathis JM, Minagar A. Gliovascular and cytokine interactions modulate brain endothelial barrier in vitro. J Neuroinflammation 2011; 8:162; PMID:22112345; http://dx.doi.org/10.1186/1742-2094-8-162
  • Yuan F, Leunig M, Berk DA, Jain RK. Microvascular permeability of albumin, vascular surface area, and vascular volume measured in human adenocarcinoma LS174T using dorsal chamber in SCID mice. Microvascular Res 1993; 45:269-89; http://dx.doi.org/10.1006/mvre.1993.1024
  • Li G, Simon MJ, Cancel LM, Shi ZD, Ji X, Tarbell JM, Morrison B, III, Fu BM. Permeability of endothelial and astrocyte cocultures: in vitro blood–brain barrier models for drug delivery studies. Annals Biomed Engineering 2010; 38:2499-511; http://dx.doi.org/10.1007/s10439-010-0023-5
  • Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. TEER Measurement Techniques for In Vitro Barrier Model Systems. Jala 2015; 20:107-26; PMID:25586998
  • Odijk M, van der Meer AD, Levner D, Kim HJ, van der Helm MW, Segerink LI, Frimat J-P, Hamilton GA, Ingber DE, van den Berg A. Measuring direct current trans-epithelial electrical resistance in organ-on-a-chip microsystems. Lab Chip 2015; 15:745-52; PMID:25427650; http://dx.doi.org/10.1039/C4LC01219D
  • Thuenauer R, Rodriguez-Boulan E, Romer W. Microfluidic approaches for epithelial cell layer culture and characterisation. Analyst 2014; 139:3206-18; PMID:24668405; http://dx.doi.org/10.1039/C4AN00056K
  • Benson K, Cramer S, Galla HJ. Impedance-based cell monitoring: barrier properties and beyond. Fluids Barriers CNS 2013; 10:5; PMID:23305242; http://dx.doi.org/10.1186/2045-8118-10-5
  • Krug SM, Fromm M, Günzel D. Two-Path impedance spectroscopy for measuring paracellular and transcellular epithelial resistance. Biophysical J 2009; 97:2202-11; http://dx.doi.org/10.1016/j.bpj.2009.08.003
  • Lippmann ES, Al-Ahmad A, Azarin SM, Palecek SP, Shusta EV. A retinoic acid-enhanced, multicellular human blood-brain barrier model derived from stem cell sources. Scientific Rep 2014; 4:4160
  • Lippmann ES, Azarin SM, Kay JE, Nessler RA, Wilson HK, Al-Ahmad A, Palecek SP, Shusta EV. Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nat Biotechnol 2012; 30:783-91; PMID:22729031; http://dx.doi.org/10.1038/nbt.2247
  • Bellin M, Marchetto MC, Gage FH, Mummery CL. Induced pluripotent stem cells: the new patient? Nat Rev Mol Cell Biol 2012; 13:713-26; PMID:23034453; http://dx.doi.org/10.1038/nrm3448
  • He YR, Yao Y, Tsirka SE, Cao Y. Cell-Culture Models of the Blood-Brain Barrier. Stroke 2014; 45:2514-26; PMID:24938839; http://dx.doi.org/10.1161/STROKEAHA.114.005427
  • Van der Meer A, Poot A, Feijen J, Vermes I. Analyzing shear stress-induced alignment of actin filaments in endothelial cells with a microfluidic assay. Biomicrofluidics 2010; 4:011103; http://dx.doi.org/10.1063/1.3366720
  • Booth R, Noh S, Kim H. A multiple-channel, multiple-assay platform for characterization of full-range shear stress effects on vascular endothelial cells. Lab Chip 2014; 14:1880-90; PMID:24718713; http://dx.doi.org/10.1039/c3lc51304a
  • Gulino-Debrac D. Mechanotransduction at the basis of endothelial barrier function. Tissue Barriers 2013; 1:e24180; PMID:24665386; http://dx.doi.org/10.4161/tisb.24180
  • Shemesh J, Jalilian I, Shi A, Heng Yeoh G, Knothe Tate ML, Ebrahimi Warkiani M. Flow-induced stress on adherent cells in microfluidic devices. Lab Chip 2015; 15:4114-27; PMID:26334370; http://dx.doi.org/10.1039/C5LC00633C
  • Son Y. Determination of shear viscosity and shear rate from pressure drop and flow rate relationship in a rectangular channel. Polymer 2007; 48:632-7; http://dx.doi.org/10.1016/j.polymer.2006.11.048
  • Vanapalli S, Van den Ende D, Duits M, Mugele F. Scaling of interface displacement in a microfluidic comparator. Appl Phys Lett 2007; 90:114109; http://dx.doi.org/10.1063/1.2713800
  • Hovell CM, Sei YJ, Kim Y. Microengineered Vascular Systems for Drug Development. J Lab Automation 2014:2211068214560767
  • Reproduced from Booth R, Kim H. Characterization of a microfluidic in vitro model of the blood-brain barrier (mu BBB). Lab Chip 2012; 12:1784-92, with permission of The Royal Society of Chemistry; PMID:22422217; http://dx.doi.org/10.1039/c2lc40094d
  • Yeon JH, Na D, Choi K, Ryu SW, Choi C, Park JK. With kind permission from Springer Science+Business Media: Biomedical Microdevices, Reliable permeability assay system in a microfluidic device mimicking cerebral vasculatures 2012; 14:1141-1148, figure 1b; PMID:22821236
  • Griep LM, Wolbers F, de Wagenaar B, ter Braak PM, Weksler BB, Romero IA, Couraud PO, Vermes I, van der Meer AD, van den Berg A. With kind permission from Springer Science+Business Media: Biomedical Microdevices, BBB ON CHIP: microfluidic platform to mechanically and biochemically modulate blood-brain barrier function 2013; 15:145-150, figure 1a and 1c; PMID:22955726
  • Reproduced from Achyuta AKH, Conway AJ, Crouse RB, Bannister EC, Lee RN, Katnik CP, Behensky AA, Cuevas J, Sundaram SS. A modular approach to create a neurovascular unit-on-a-chip. Lab Chip 2013; 13:542-53, with permission of The Royal Society of Chemistry; PMID:23108480; http://dx.doi.org/10.1039/C2LC41033H
  • Reproduced fromPrabhakarpandian B, Shen MC, Nichols JB, Mills IR, Sidoryk-Wegrzynowicz M, Aschner M, Pant K. SyM-BBB: a microfluidic blood brain barrier model. Lab Chip 2013; 13:1093-101, with permission of The Royal Society of Chemistry; PMID:23344641; http://dx.doi.org/10.1039/c2lc41208j
  • Reproduced with permission from Kim JA, Kim HN, Im SK, Chung S, Kang JY, Choi N. Collagen-based brain microvasculature model in vitro using three-dimensional printed template. Biomicrofluidics 2015; 9:024115. Copyright 2015, AIP Publishing LLC
  • Reprinted with permission from Brown JA, Pensabene V, Markov DA, Allwardt V, Neely MD, Shi M, Britt CM, Hoilett OS, Yang Q, Brewer BM, et al. Recreating blood-brain barrier physiology and structure on chip: A novel neurovascular microfluidic bioreactor. Biomicrofluidics 2015; 9:054124. Copyright 2015, AIP Publishing LLC
  • Reprinted with permission from Sellgren KL, Hawkins BT, Grego S. An optically transparent membrane supports shear stress studies in a three-dimensional microfluidic neurovascular unit model. Biomicrofluidics 2015; 9:061102. Copyright 2015, AIP Publishing LLC
  • Reprinted from Sensors and Actuators B: Chemical, 222, Walter FR, Valkai S, Kincses A, Petneházi A, Czeller T, Veszelka S, Ormos P, Deli MA, Dér A. A versatile lab-on-a-chip tool for modeling biological barriers, 1209-1219, Copyright 2016, with permission from Elsevier