4,474
Views
109
CrossRef citations to date
0
Altmetric
Review

Nanoparticle transport across the blood brain barrier

, , , , , & show all
Article: e1153568 | Received 29 Dec 2015, Accepted 04 Feb 2016, Published online: 25 Feb 2016

References

  • Abbott NJ. Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell Mol Neurobiol 2005; 25(1):5-23; PMID:15962506; http://dx.doi.org/10.1007/s10571-004-1374-y
  • Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis 2010; 37(1):13-25; PMID:19664713; http://dx.doi.org/10.1016/j.nbd.2009.07.030
  • Abdel-Wahab BA, Abdel-Latif MM, Abdel-Hafez AA. Comparative study for brain delivery of tacrine using polysorbate 80 - coated poly(butylcyanoacrylate) and pegylated-poly(butylcyanoacrylate) nanoparticles. International J Nano Biomaterials 2009; 2:pp. 360-74; http://dx.doi.org/10.1504/IJNBM.2009.027733
  • Alavijeh MS, Chishty M, Qaiser MZ, Palmer AM. Drug metabolism and pharmacokinetics, the blood-brain barrier, and central nervous system drug discovery. NeuroRx 2005; 2:pp. 554-71; PMID:16489365; http://dx.doi.org/10.1602/neurorx.2.4.554
  • Albert MM, Stahl-Carroll L, Luther MF, Graybill JR. Comparison of liposomal amphotericin B to amphotericin B for treatment of murine cryptococcal meningitis. J Mycological Med 1995; 5:pp. 1-6
  • Ambikanandan M, Ganesh S, Aliasgar S. Drug delivery to the central nervous system: a review. J Pharm Pharmaceut Sci 2003; 6(2):252-273
  • Ambruosi A, Gelperina S, Khalansky A, Tanski S, Theisen A, Kreuter J. Influence of surfactants, polymer and doxorubicin loading on the anti-tumour effect of poly(butyl cyanoacrylate) nanoparticles in a rat glioma model. J Microencapsulation 2006; 23:pp. 582-92; PMID:16980278; http://dx.doi.org/10.1080/02652040600788080
  • Anstrom KK, Schallert T, Woodlee MT, Shattuck A, Roberts DC. Repetitive vibrissae-elicited forelimb placing before and immediately after unilateral 6-hydroxydopmaine improves outcome in a model of Parkinson disease. Behavioural Brain Res 2007; 179:pp. 183-91; PMID:17374405; http://dx.doi.org/10.1016/j.bbr.2007.01.028
  • Armulik A, Genové G, Maoe M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C. Pericytes regulate the blood-brain barrier. Nature 2010; 468(7323): 557-561; PMID:20944627; http://dx.doi.org/10.1038/nature09522
  • Ballabh P, Braun A, Nedergaard M. The blood–brain barrier: an overview, Structure, regulation, and clinical implications, Neurobiol Disease 2004; 16, pp. 1-13; PMID:15207256; http://dx.doi.org/10.1016/j.nbd.2003.12.016
  • Banerjee PN, Filippi D, Hauser WA. The descriptive epidemiology of epilepsy-a review. Epilepsy Res 2009; 85:pp. 31-45; PMID:19369037; http://dx.doi.org/10.1016/j.eplepsyres.2009.03.003
  • Banks WA. Drug delivery to the brain in Alzheimer disease: consideration of the blood-brain barrier. Adv Drug Deliv Rev 2012; 64(7):629-39; PMID:22202501; http://dx.doi.org/10.1016/j.addr.2011.12.005
  • Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, Zlokovic BV. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 2010; 68: 409-427; PMID:21040844; http://dx.doi.org/10.1016/j.neuron.2010.09.043
  • Boado RJ, Pardridge WM. Glucose deprivation and hypoxia increase the expression of the GLUT-1glucose transporter via a specific mRNA cis-acting regulatory element. J. Neurochem 2002; 80:552-554; PMID:11906001; http://dx.doi.org/10.1046/j.0022-3042.2001.00756.x
  • Braak H, Del Tredici K, Rub U, De Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson disease. Neurobiol Aging 2003; 24:197-211; PMID:12498954; http://dx.doi.org/10.1016/S0197-4580(02)00065-9
  • Breese GR, Knapp DJ, Criswell HE, Moy SS, Papadeas ST, Blake BL. The neonate-6-hydroxydopamine-lesioned rat: a model for clinical neuroscience and neurobiological principles. Brain Res Rev 2005; 48, pp:57-73; PMID:15708628; http://dx.doi.org/10.1016/j.brainresrev.2004.08.004
  • Burke M, Langer R, Brim H. Central Nervous System: Drug Delivery to Treat. In The Encyclopedia of Controlled Drug Delivery. Mathiowitz E, Ed; John Wiley and Sons, Vol. 1, 1999; 184-212
  • Burns R.S., LeWitt P.A., Ebert MH. The clinical syndrome of striatal dopamine deficiency. Parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). N Eng J Med 1985; 312, pp.1418-21; PMID:2581135; http://dx.doi.org/10.1056/NEJM198505303122203
  • Chan PH, Longar S, Fishman RA. Protective effects of liposome-entrapped superoxide dismutase on posttraumatic brain edema. Annals Neurol 1987; 21, pp. 540-47; PMID:3037989; http://dx.doi.org/10.1002/ana.410210604
  • Chen ST, Hsu CY, Hogan EL, Maricq H, Balentine JD. A model of focal ischemic stroke in the rat: Reproducible extensive cortical infarction. Stroke 1986; 17, pp. 738-43; PMID:2943059; http://dx.doi.org/10.1161/01.STR.17.4.738
  • Chu C, Zhang Y, Boado RJ, Pardridge WM. Decline in exogenous gene expression in primate brain following intravenous administration is due to plasmid degradation. Pharmaceutical Res 2006; 23, pp:1586-90; PMID:16779704; http://dx.doi.org/10.1007/s11095-006-0274-x
  • Clemons KV, Espiritu M, Parmar R, Stevens DA. Comparative efficacies of conventional amphotericin B, liposomal amphotericin B (AmBisome), caspofungin, micafungin, and voriconazole alone and in combination against experimental murine Central Nervous System aspergillosis. Antimicrobial Agents Chemotherapy 2005; 49, pp. 4867-75; PMID:16304147; http://dx.doi.org/10.1128/AAC.49.12.4867-4875.2005
  • Clemons KV, Howell KJ, Calderon L, Sobel RA, Williams PL, Stevens DA. Efficacy of intravenous AmBisome against coccidioidal meningitis in rabbits. In abstract of the Fortieth Interscience Conference on Antimicrobial Agents and Chemotherapy, Toronto, Canada, Abstract 2120, American Society for Microbiology, Washington DC 2000:p. 396
  • Cordon-Cardo C, O'Brien JP, Casals D, Rittman-Grauer L, Biedler JL, Melamed MR, Bertino JR. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci 1989; 86:695-8; PMID:2563168; http://dx.doi.org/10.1073/pnas.86.2.695
  • Cruz LJ, Stammes MA, Que I, van Beek ER, Knol-Blankevoort VT, Snoeks TJ, Chan A, Kaijzel EL, Löwik CW. Effect of PLGA NP size on efficiency to target traumatic brain injury. J Control Release 2016; 223:31-41; http://dx.doi.org/10.1016/j.jconrel.2015.12.029
  • Cummings J.L., Cole G. Alzheimer disease. J Am Medical Assoc 2002; 287, pp. 2335-38; PMID:11988038; http://dx.doi.org/10.1001/jama.287.18.2335
  • Dalkara T, Alarcon-Martinez L. Cerebral microvascular pericytes and neurogliovascular signaling in health and disease. Brain Res 2015; 1623: 3-17; PMID:25862573; http://dx.doi.org/10.1016/j.brainres.2015.03.047
  • Daneman R, Zhou L, Kebede AA, Barres BA. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 2010; 468 (7323): 562-6; PMID:20944625; http://dx.doi.org/10.1038/nature09513
  • Das S, Mandal AK, Ghosh A, Panda S, Das N, Sarkar S. Nanoparticulated quercetin in combating age related cerebral oxidative injury. Curr Aging Sci 2008; 1, pp. 169-74; PMID:20021389; http://dx.doi.org/10.2174/1874609810801030169
  • Dauchy S, Miller F, Couraud PO, Weaver RJ, Weksler B, Romero IA, Scherrmann JM, De Waziers I, Declèves X. Expression and transcriptional regulation of ABC transporters and cytochromes P450 in hCMEC/D3 human cerebral microvascular endothelial cells. Biochem Pharmacol 2009; 77: 897-909; PMID:19041851; http://dx.doi.org/10.1016/j.bcp.2008.11.001
  • Eid T, Lee TS, Thomas MJ, Amiry-Moghaddam M, Bjornsen LP, Spencer DD, Agre P, Ottersen OP, de Lanerolle NC. Loss of perivascular aquaporin 4 may underlie deficient water and Kþ homeostasis in the human epileptogenic hippocampus. Proc Natl Acad Sci USA 2005; 102:pp. 1193-98; http://dx.doi.org/10.1073/pnas.0409308102
  • El-Bacha RS, Minn A. Drug metabolizing enzymes in cerebrovascular endothelial cells afford a metabolic protection to the brain. Cell Mol Biol 1999; 45: 15-23; PMID:10099836
  • Feuerstein GZ, Liu T, Barone FC. Cytokines, inflammation, and brain injury: role of tumor necrosis factor-α. Cerebrovascular Brain Metabolism Rev 1994; 6, pp. 341-60; PMID:7880718
  • Fischer S, Clauss M, Wiesnet M, Renz D, Schaper W, Karliczek GF. Hypoxia induces permeability in brain microvessel endothelial cells via VEGF and NO. Am J Physiol 1999; 276, pp. C812-C820; PMID:10199811
  • Fresta M, Puglisi G, Di Giacomo C, Russo A. Liposomes as in-vivo carriers for citicoline: effects on rat cerebral post-ischaemic reperfusion. J Pharmaceutics Pharmacol 1994; 46:pp. 974-81; http://dx.doi.org/10.1111/j.2042-7158.1994.tb03252.x
  • Friese A, Seiller E, Quack G, Lorenz B, Kreuter J. Increase of the duration of the anticonvulsive activity of a novel NMDA receptor antagonist using poly(butylcyanoacrylate) nanoparticles as a parenteral controlled release system. Eur J Pharmaceutics Biopharmaceutics 2000; 49:pp. 103-109; PMID:10704892; http://dx.doi.org/10.1016/S0939-6411(99)00073-9
  • Gelperina S, Maksimenko O, Khalansky A, Vanchugova L, Shipulo E, Abbasova K, Berdiev R, Wohlfart S, Chepurnova N, Kreuter J. Drug delivery to the brain using surfactant-coated poly(lactide-co-glycolide) nanoparticles: influence of the formulation parameters. Eur J Pharmaceutics Biopharmaceutics 2010; 74:pp. 157-63; PMID:19755158; http://dx.doi.org/10.1016/j.ejpb.2009.09.003
  • Ghosh A, Mandal AK, Sarkar S, Panda S, Das N. Nanoencapsulation of quercetin enhances its dietary efficacy in combating arsenic-induced oxidative damage in liver and brain of rats. Life Sci 2009; 84:pp. 75-80; PMID:19036345; http://dx.doi.org/10.1016/j.lfs.2008.11.001
  • Gold R, Giegerich G, Hartung HP, Toyka KV. T-cell receptor (TCR) usage in Lewis rat experimental autoimmune encephalomyelitis: TCR β-chain-variable-region V β 8.2-positive T cells are not essential for induction and course of disease. Proc Natl Acad Sci USA 1995; 92:pp. 5850-54; http://dx.doi.org/10.1073/pnas.92.13.5850
  • Grabrucker AM, Chhabra R, Belletti D, Forni F, Vandelli MA, Ruozi B, Tosi G. Nanoparticles as Blood-Brain Barrier Permeable CNS Targeted Drug Delivery Systems. Top Med Chem 2014; 10: 71-90; http://dx.doi.org/10.1007/7355_2013_22
  • Groll AH, Giri N, Petraitis V, Petraitiene R, Candelario M, Bacher JS, Piscitelli SC, Walsh TJ. Comparative efficacy and distribution of lipid formulations of amphotericin B in experimental Candida Albicans infections of the central nervous systems. J Infect Dis 2000; 182:pp. 274-82; http://dx.doi.org/10.1086/315643
  • Gupta U, Jain NK. Non-polymeric nano-carriers in HIV/AIDS drug delivery and targeting. Adv Drug Delivery Rev 2010; 62:pp. 478-90; PMID:19913579; http://dx.doi.org/10.1016/j.addr.2009.11.018
  • Haseloff RF, Blasig IE, Bauer HC, Bauer H. In search of the astrocytic factor(s) modulating blood-brain barrier functions in brain capillary endothelial cells in vitro. Cell Mol Neurobiol 2005; 25(1):25-39; PMID:15962507; http://dx.doi.org/10.1007/s10571-004-1375-x
  • Hauser WA, Kurland LT. The epidemiology of epilepsy in Rochester (Minnesota), 1935-1967. Epilepsia 1975; 16:pp:1-66; PMID:804401; http://dx.doi.org/10.1111/j.1528-1157.1975.tb04721.x
  • Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA. Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurolol 2003; 60:pp. 1119-22; http://dx.doi.org/10.1001/archneur.60.8.1119
  • Hely MA, Morris JG, Reid WG, Trafficante R. Sydney Multicenter Study of Parkinson disease: non-L-dopa-responsive problems dominate at 15 years. Movement Disorders 2005; 20:pp. 190-99; PMID:15551331; http://dx.doi.org/10.1002/mds.20324
  • Huber JD, Egleton RD, Davis TP. Molecular physiology and pathophysiology of tight junctions in the blood–brain barrier. Trends Neurosci 2001; 24, 719-725; PMID:11718877; http://dx.doi.org/10.1016/S0166-2236(00)02004-X
  • Hughes AJ, Daniel SE, Blankson S, Lees AJ. A clinicopathologic study of 100 cases of Parkinson disease. Arch Neurol 1993; 50, 140-48; PMID:8431132; http://dx.doi.org/10.1001/archneur.1993.00540020018011
  • Imaizumi S, Woolworth V, Fishman RA, Chan PH. Liposome-entrapped superoxide dismutase reduces cerebral infarction in cerebral ischemia in rats. Stroke, 1990; 21:pp. 1312-17; PMID:2396268; http://dx.doi.org/10.1161/01.STR.21.9.1312
  • Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomed 2006; 1:pp. 297-315; PMID:17717971; http://dx.doi.org/10.2217/17435889.1.3.297
  • Inekci D, Jonesco DS, Kennard S, Karsdal MA, Henriksen K. The potential of pathological protein fragmentation in blood-based biomarker development for dementia - with emphasis on Alzheimer disease. Front Neurol 2015; 11:6:90
  • Jafari HS, Sáez-Llorens X, Severien C, Parras F, Friedland I, Rinderknecht S, Ehrett S, Olsen KD, Abramowsky C, McCracken GH, Jr. Effects of antifungal therapy on inflammation, sterilization, and histology in experimental Candida albicans meningitis. Antimicrobial Agents Chemotherapy 1994; 38:pp. 83-89; PMID:7511361; http://dx.doi.org/10.1128/AAC.38.1.83
  • Jain NK, Rana AC, Jain SK. Brain drug delivery system bearing dopamine hydrochloride for effective management of parkinsonism. Drug Dev Industrial Pharmacy 1998; 24(7):pp:671-75; PMID:9876513; http://dx.doi.org/10.3109/03639049809082370
  • Janigro D. Blood-brain barrier, ion homeostatis and epilepsy: possible implications towards the understanding of ketogenic diet mechanisms. Epilepsy Res 1999; 37:pp:223-32; PMID:10584972; http://dx.doi.org/10.1016/S0920-1211(99)00074-1
  • Kageyama T, Nakamura M, Matsuo A, Yamasaki Y, Takakura Y, Hashida M, Kanai Y, Naito M, Tsuruo T, Minato N, Shimohama S. The 4F2hc/LAT1 complex transports L-DOPA across the blood-brain barrier. Brain Res 2000; 879 (1-2):115-21; PMID:11011012; http://dx.doi.org/10.1016/S0006-8993(00)02758-X
  • Kizelsztein P, Ovadia H, Garbuzenko O, Sigal A, Barenholz Y. Pegylated nanoliposomes remote-loaded with the antioxidant tempamine ameliorate experimental autoimmune encephalomyelitis. J Neuroimmunol 2009; 213:pp. 25-25; PMID:19564052; http://dx.doi.org/10.1016/j.jneuroim.2009.05.019
  • Kondo T, Kinouchi H, Kawase M, Yoshimoto T. Astroglial cells inhibit the increasing permeability of brain endothelial cell monolayer following hypoxia/reoxygenation. Neuroscience Lett 1996; 208:pp. 101-04; http://dx.doi.org/10.1016/0304-3940(96)12555-6
  • Kreuter J. Application of nanoparticles for the delivery of drugs to the brain Int Congress Series 2005; 1277:pp. 85-94; http://dx.doi.org/10.1016/j.ics.2005.02.014
  • Kurakhamaeva KB, Djindjikhashvili IA, Petrov VE, Balabanyan VU, Voronina TA, Trofimov SS, et al. Brain targeting of nerve growth factor using poly(butyl cyanoacrylate) nanoparticles. J Drug Target 2009; 17:pp:564-74; PMID:19694610; http://dx.doi.org/10.1080/10611860903112842
  • Leybaert L, De Bock M, Van Moorhem M, Decrock E, De Vuyst E. Neurobarrier coupling in the brain: adjusting glucose entry with demand. J Neurosci Res 2007; 85:3213-3220; PMID:17265466; http://dx.doi.org/10.1002/jnr.21189
  • Liu LH, Xu KJ, Wang HY, Tan PK, Fan W, Venkatraman SS, Li L, Yang YY. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat Nanotechnol 2009; 4:pp. 457-63; PMID:19581900; http://dx.doi.org/10.1038/nnano.2009.153
  • Löscher W, Fisher JE, Nau H, Honack D. Marked increase in anticonvulsant activity but decrease in wet-dog shake behaviour during short-term treatment ofamygdala-kindled rats with vaiproic acid. Eur J Pharmacol 1988; 150:pp. 221-32; PMID:3138139; http://dx.doi.org/10.1016/0014-2999(88)90002-7
  • Macciardi F, Boneschi F, Cohen D. Pharmacogenetics of autoimmune diseases: Research issues in the case of Multiple Sclerosis and the role of IFN-b. J Autoimmunity 2005; 25:pp. 1-5; PMID:16311019; http://dx.doi.org/10.1016/j.jaut.2005.09.008
  • Manfredsson FP, Lewin AS, Mandel RJ. RNA knockdown as a potential therapeutic strategy in Parkinson disease. Gene Therapy, 2005; 13:pp. 517-24; http://dx.doi.org/10.1038/sj.gt.3302669
  • Mark KS, Davies TP. Cerebral microvascular changes in permeability and tight junctions induced by hypoxia-reoxygenation. Am J Physiol: Heart Circulatory Physiol 2002; 282:pp. H1485-H1494; PMID:11893586
  • Menon PK, Muresanu DF, Sharma A, Mössler H, Sharma HS. Cerebrolysin, a mixture of neurotrophic factors induces marked neuroprotection in spinal cord injury following intoxication of engineered nanoparticles from metals. CNS Neurol Disord Drug Targets 2012c; 11(1):40-9; http://dx.doi.org/10.2174/187152712799960781
  • Minagar A, Ostanin D, Long AC, Jennings M, Kelley RE, Sasaki M, Alexander JS. Serum from patients with multiple sclerosis downregulates occluding and VE-cadherin expression in cultured endothelial cells, Multiple Sclerosis 2003; 9:pp. 235-38; PMID:12814168; http://dx.doi.org/10.1191/1352458503ms916oa
  • Mishra B, Patel BB, Tiwari S. Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomed 2010; 6, pp. 9-24; http://dx.doi.org/10.1016/j.nano.2009.04.008
  • Mishra MK, Beaty CA, Lesniak WG, Kambhampati SP, Zhang F, Wilson MA, Blue ME, Troncoso JC, Kannan S, Johnston MV, et al. Dendrimer brain uptake and targeted therapy for brain injury in a large animal model of hypothermic circulatory arrest. ACS Nano 2014; 8(3):2134-47; PMID:24499315; http://dx.doi.org/10.1021/nn404872e
  • Mori N., Fukatsu T. Anticonvulsant effect of DN-1417, a derivative of thyrotropin-releasing hormone, and liposome-entrapped DN-1417, on amygdaloid-kindled rats. Epilepsy 1992a; 33:pp:994-1000; http://dx.doi.org/10.1111/j.1528-1157.1992.tb01749.x
  • Mori N, Kurokouchi A, Osonoe K, Saitoh H, Ariga K, Suzuki K, Iwata Y. Liposome-entrapped phenytoin locally suppresses amygdaloid epileptogenic focus created by db-Camp/EDTA in rats. Brain Res 1995; 703:pp. 184-90; PMID:8719631; http://dx.doi.org/10.1016/0006-8993(95)01095-5
  • Mori N., Ohta S. Comparison of anticonvulsant effects of valproic acid entrapped in positively and negatively charged liposomes in amygdaloid-kindled rats. Brain Research 1992b; 593, pp. 329-31; http://dx.doi.org/10.1016/0006-8993(92)91330-H
  • Muller DM, Pender MP, Greer JM. Blood–brain barrier disruption and lesion localisation in experimental autoimmune encephalomyelitis with predominant cerebellar and brainstem involvement. J Neuroimmunol 2005; 160:pp. 162-69; PMID:15710469; http://dx.doi.org/10.1016/j.jneuroim.2004.11.011
  • Nabeshima S, Reese TS, Landis DM, Brightman MW. Junctions in the meninges and marginal glia. J Comp Neurol 1975; 164 (2): 127-69; PMID:810497; http://dx.doi.org/10.1002/cne.901640202
  • Neuwelt EA, Bauer B, Fahlke C, Fricker G, Iadecola C, Janigro D, Leybaert L, Molnár Z, O'Donnell ME, Povlishock JT, et al. Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci 2011; 12, 169-182; PMID:21331083; http://dx.doi.org/10.1038/nrn2995
  • Nicholson C. Diffusion and related transport mechanisms in brain tissue. Rep Prog Phys 2001; 64: 815-884; http://dx.doi.org/10.1088/0034-4885/64/7/202
  • Obermaier B, Klein M, Koedel U, Pfister HW. Disease models of acute bacterial meningitis. Drug Discovery Today, 2006; 3:pp. 105-12; http://dx.doi.org/10.1016/j.ddmec.2006.02.009
  • Ohira T, Shahar E, Chambless LE, Rosamond WD, Mosley TH, Folsom AR. Risk factors for ischemic stroke subtypes: the atherosclerosis risk in communities study. Stroke 2006; 37, pp. 2493-98; PMID:16931783; http://dx.doi.org/10.1161/01.STR.0000239694.19359.88
  • Pardridge WM, Boado RJ, Farrell CR. Brain-type glucose transporter (GLUT-1) is selectively localized to the blood-brain barrier. Studies with quantitative western blotting and in situ hybridization. J Biol Chem 1990; 265:18035-18040; PMID:2211679
  • Pardridge WM, Eisenberg J, Yang J. Human blood-brain barrier transferrin receptor. Metabolism 1987; 36:892-895; PMID:3306281; http://dx.doi.org/10.1016/0026-0495(87)90099-0
  • Pardridge WM, Eisenberg J, Yang J. Human blood-brain barrier insulin receptor. J Neurochem 1985; 44:1771-1778; PMID:2859355; http://dx.doi.org/10.1111/j.1471-4159.1985.tb07167.x
  • Pardridge WM, Oldendorf WH. Kinetic analysis of blood-brain barrier transport of amino acids. Biochim Biophys Acta 1975; 401:128-136; PMID:1148286; http://dx.doi.org/10.1016/0005-2736(75)90347-8
  • Pardridge WM, Oldendorf WH. Transport of metabolic substrates through the blood-brain barrier. J Neurochem 1977; 28:5-12; PMID:833603; http://dx.doi.org/10.1111/j.1471-4159.1977.tb07702.x
  • Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab 2012; 32(11):1959-72; PMID:22929442; http://dx.doi.org/10.1038/jcbfm.2012.126
  • Peppiatt CM, Howarth C, Mobbs P, Attwell D. Bidirectional control of CNS capillary diameter by pericytes. Nature 2006; 443:700-704; PMID:17036005; http://dx.doi.org/10.1038/nature05193
  • Petkov VD, Mosharrof AH, Petkov VV. Comparative studies on the effects of the nootropic drugs adafenoxate, meclofenoxate and piracetam, and of citicholine on scopolamine-impaired memory, exploratory behavior and physical capabilities (experiments on rats and mice). Acta Physiologica Et Pharmacologica Bulgarica 1998; 14:pp. 3-13
  • Petri B, Bootz A, Khalansky A, Hekmatara T, Müller R, Uhl R, Kreuter J, Gelperina S. Chemotherapy of brain tumour using doxorubicin bound to surfactant-coated poly(butyl cyanoacrylate) nanoparticles: revisiting the role of surfactants, J Controlled Rel 2007; 117:pp. 51-58; PMID:17150277; http://dx.doi.org/10.1016/j.jconrel.2006.10.015
  • Pichandy M., Mishra M., Kanaiyan S., Rao S., Anbu J. Formulation and psychopharmacological evaluation of surfactant modified liposome for parkinsonism disease. Asian J Pharmaceutical Clin Res 2010; 3:pp. 46-54
  • Pollak Y, Ovadia H, Orion E, Weidenfeld J, Yirmiya R. The EAE-associated behavioral syndrome: I. Temporal correlation with inflammatory mediators. J Neuroimmunol 2003; 137:pp. 94-99; PMID:12667652; http://dx.doi.org/10.1016/S0165-5728(03)00075-4
  • Reddy MK, Labhasetwar V. Nanoparticle-mediated delivery of superoxide dismutase to the brain: an effective strategy to reduce ischemia-reperfusion injury. FASEB Journal, 2009; 23, pp. 1384-95; http://dx.doi.org/10.1096/fj.08-116947
  • Remaut K, Lucas B, Braeckmans K, Demeester J, De Smedt SC. Pegylation of liposomes favours the endosomal degradation of the delivered phosphodiester oligonucleotides. J Controlled Release 2007; 117:pp. 256-66; PMID:17188777; http://dx.doi.org/10.1016/j.jconrel.2006.10.029
  • Ren T, Xu N, Cao C, Yuan W, Yu X., Chen J, Ren J. Preparation and Therapeutic efficacy of polysorbate-80-coated amphotericin B/PLA-b-PEG nanoparticles. J Biomaterials Sci 2009; 20, pp. 1369-80; http://dx.doi.org/10.1163/092050609X12457418779185
  • Robinson PA, Bauer M, Leal MA, Evans SG, Holtom PD, Diamond DA, Leedom JM, Larsen RA. Early mycological treatment failure in AIDS-associated cryptococcal meningitis. Clin Infect Dis 1999; 28:pp. 82-92; PMID:10028076; http://dx.doi.org/10.1086/515074
  • Ruozi B, Belletti D, Sharma HS, Sharma A, Muresanu DF, Mössler H, Forni F, Vandelli MA, Tosi G. PLGA Nanoparticles Loaded Cerebrolysin: Studies on Their Preparation and Investigation of the Effect of Storage and Serum Stability with Reference to Traumatic Brain Injury. Mol Neurobiol 2015; 52(2):899-912; PMID:26108180; http://dx.doi.org/10.1007/s12035-015-9235-x
  • Rutten BP, Van der Kolk NM, Schafer S, Van Zandvoort MA, Bayer TA, Steinbusch HW, Schmitz C. Age-related loss of synaptophysin immunoreactive presynaptic boutons within the hippocampus of APP751SL, PS1M146L, and APP751SL/PS1M146L transgenic mice. Am J Pathol 2005; 167:pp. 161-73; PMID:15972962; http://dx.doi.org/10.1016/S0002-9440(10)62963-X
  • Sang LY, Liang YX, Li Y, Wong WM, Tay DK, So KF, Ellis-Behnke RG, Wu W, Cheung RT. A self-assembling nanomaterial reduces acute brain injury and enhances functional recovery in a rat model of intracerebral hemorrhage. Nanomedicine 2015; 11(3):611-20; PMID:24907463; http://dx.doi.org/10.1016/j.nano.2014.05.012
  • Sarkar S, Das N. Mannosylated liposomal flavonoid in combating age-related ischemia reperfusion induced oxidative damage in rat brain. Mechan Ageing Dev 2006; 127, pp. 391-97; http://dx.doi.org/10.1016/j.mad.2005.12.010
  • Schapira AH. Causes of neuronal death in Parkinson disease. Advances Neurol 2001; 86, pp. 155-62
  • Schlageter KE, Molnar P, Lapin GD, Groothuis DR. Microvessel organization and struc- ture in experimental brain tumors: microvessel populations with distinctive structural and functional properties. Microvasc Res 1999; 58:312-328; PMID:10527772; http://dx.doi.org/10.1006/mvre.1999.2188
  • Schmidt J, Metselaar JM, Gold R. Intravenous liposomal prednisolone downregulates in Situ TNF-a production by T-cells in experimental autoimmune encephalomyelitis. J Histochem Cytochem 2003a; 51, pp:1241-44http://dx.doi.org/10.1177/002215540305100915
  • Schmidt J, Metselaar JM, Wauben MHM, Toyka KV, Storm G, Gold R. Drug targeting by long-circulating liposomal glucocorticosteroids increases therapeutic efficacy in a model of multiple sclerosis. Brain 2003b; 126, pp. 1895-1904; http://dx.doi.org/; http://dx.doi.org/10.1093/brain/awg176
  • Selkoe DJ. Alzheimer disease: genes, proteins, and therapy. Physiological Rev 2001; 81, pp. 741-66; PMID:11274343
  • Sharma HS. Pathophysiology of blood-spinal cord barrier in traumatic injury and repair. Curr Pharm Des 2005; 11(11):1353-89; PMID:15853669; http://dx.doi.org/10.2174/1381612053507837
  • Sharma HS, Menon PK, Lafuente JV, Aguilar ZP, Wang YA, Muresanu DF, Mössler H, Patnaik R, Sharma A. The role of functionalized magnetic iron oxide nanoparticles in the central nervous system injury and repair: new potentials for neuroprotection with Cerebrolysin therapy. J Nanosci Nanotechnol 2014; 14(1):577-95; PMID:24730284; http://dx.doi.org/10.1166/jnn.2014.9213
  • Sharma HS, Sharma A. Nanowired drug delivery for neuroprotection in central nervous system injuries: modulation by environmental temperature, intoxication of nanoparticles, and comorbidity factors. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2012a; 4(2):184-203; http://dx.doi.org/10.1002/wnan.172
  • Sharma HS, Sharma A, Mössler H, Muresanu DF. Neuroprotective effects of cerebrolysin, a combination of different active fragments of neurotrophic factors and peptides on the whole body hyperthermia-induced neurotoxicity: modulatory roles of co-morbidity factors and nanoparticle intoxication. Int Rev Neurobiol 2012b; 102:249-76; http://dx.doi.org/10.1016/B978-0-12-386986-9.00010-7
  • Sharma HS, Sharma A. New perspectives of nanoneuroprotection, nanoneuropharmacology and nanoneurotoxicity: modulatory role of amino acid neurotransmitters, stress, trauma, and co-morbidity factors in nanomedicine. Amino Acids 2013 45(5):1055-71; PMID:24022705; http://dx.doi.org/10.1007/s00726-013-1584-z
  • Skarlatos S, Yoshikawa T, Pardridge WM. Transport of [125I]transferrin through the rat blood-brain barrier. Brain Res 1995; 683:164-171; PMID:7552351; http://dx.doi.org/10.1016/0006-8993(95)00363-U
  • Skorupa AF, Fisher KJ, Wilson JM, Parente MK, Wolfe JH. Sustained production of β-glucuronidase from localized sites after AAV Vector gene transfer results in widespread distribution of enzyme and reversal of lysosomal storage lesions in a large volume of brain in Mucopolysaccharidosis VII mice. Exp Neurol 1999; 160:pp. 17-27; PMID:10630187; http://dx.doi.org/10.1006/exnr.1999.7176
  • Sly WS, Vogler C. Brain-directed gene therapy for lysosomal storage disease: Going well beyond the blood–brain barrier. Proc Natl Acad Sci 2002; 99, pp. 5760-62; http://dx.doi.org/10.1073/pnas.102175599
  • Sopala M, Schweizer S, Schäfer N, Nürnberg E, Kreuter J, Seiller E, et al. Neuroprotective activity of a nanoparticulate formulation of the glycineB site antagonist MRZ 2/576 in transient focal ischaemia in rats. Arzneimittelforschung 2002; 52, pp. 168-74; PMID:11963643
  • Stein WD. The Molecular Basis of Diffusion Across Cell Membranes. Academic Press: New York, NY. 1967 pp 66-125
  • Takemoto K, Yamamoto Y, Ueda Y. Influence of the progression of cryptococcal meningitis on brain penetration and efficacy of AmBisome in a murine model. Chemotherapy 2006; 52:pp. 271-78; PMID:16988503; http://dx.doi.org/10.1159/000095820
  • Tarkowski E, Rosengren L, Blomstrand C, Wikkelso C, Jensen C, Ekholm S, Tarkowski A. Intrathecal release of pro- and anti-inflammatory cytokines during stroke. Clin Exp Immunol 1997; 110:pp. 492-99; PMID:9409656; http://dx.doi.org/10.1046/j.1365-2249.1997.4621483.x
  • Tonra JR, Reiseter BS, Kolbeck R, Nagashima K, Robertson R, Keyt B, Lindsay RM. Comparison of the timing of acute blood–brain barrier breakdown to rabbit immunoglobulin G in the cerebellum and spinal cord of mice with experimental autoimmune encephalomyelitis. J Comparative Neurol 2001; 430:pp. 131-44; PMID:11135250; http://dx.doi.org/10.1002/1096-9861(20010129)430:1%3c131::AID-CNE1019%3e3.0.CO;2-K
  • Valenza M, Chen JY, Di Paolo E, Ruozi B, Belletti D, Ferrari Bardile C, Leoni V, Caccia C, Brilli E, Di Donato S, et al. Cholesterol-loaded nanoparticles ameliorate synaptic and cognitive function in Huntington's disease mice. EMBO Mol Med 2015; 7(12):1547-64; PMID:26589247; http://dx.doi.org/10.15252/emmm.201505413
  • Van Vliet EA, Da Costa Araujo S, Redeker S, Van Schaik R, Aronica E, Gorter JA. Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain, 2007; 130:pp. 521-34; PMID:17124188; http://dx.doi.org/10.1093/brain/awl318
  • Venable N, Kelly PH. Effects of NMDA receptor antagonists on passive avoidance learning and retrieval in rats and mice. Psychopharmacology, 1990; 100:pp. 215-21; PMID:2154833; http://dx.doi.org/10.1007/BF02244409
  • Villegas JC, Broadwell RD. Transcytosis of protein through the mammalian cerebral epithelium and endothelium. II. Adsorptive transcytosis of WGA-HRP and the blood-brain and brain-blood barriers. J Neurocytol 1993; 22(2): 67-80; PMID:7680372; http://dx.doi.org/10.1007/BF01181571
  • Vonsattel JP, DiFiglia M. “Huntington disease.” J Neuropathol Exp Neurol 1998; 57(5): 369-384; PMID:9596408; http://dx.doi.org/10.1097/00005072-199805000-00001
  • Wang H, Xu K, Liu L, Tan JPK, Chen Y, Li Y, Fan W, Wei Z, Sheng J, Yang YY, et al. The efficacy of self-assembled cationic antimicrobial peptide nanoparticles against Cryptococcus neoformans for the treatment of meningitis. Biomaterials, 2010; 31:pp. 2874-81; PMID:20044131; http://dx.doi.org/10.1016/j.biomaterials.2009.12.042
  • Weintraub D, Comella CL, Horn S. Parkinson disease – Part 2: Treatment of motor symptoms. Am J Management Care 2008; 14, pp. S49-S58
  • Weiss N, Miller F, Cazaubon S, Couraud PO. The blood-brain barrier in brain homeostasis and neurological diseases. Biochimica Biophysisca Acta 2009; 1788, pp. 842-57; http://dx.doi.org/10.1016/j.bbamem.2008.10.022
  • WHO. Epilepsy: aetiology, epidemiology and prognosis (vol. fact sheet no. 165) 2001a
  • WHO. World Health Organization: epilepsy: epidemiology, aetiology and prognosis. WHO factsheet 2001b
  • Xia CF, Boado RJ, Zhang Y, Chu C, Pardridge WM. Intravenous glial-derived neurotrophic factor gene therapy of experimental Parkinson disease with Trojan horse liposomes and a tyrosine hydroxylase promoter. The J Gene Med 2007a; 10, pp. 306-15; http://dx.doi.org/10.1002/jgm.1152
  • Xia CF, Chu, C, Li J, Wang Y, Zhang Y, Boado RJ, Pardridge WM. Comparison of cDNA and genomic forms of tyrosine hydroxylase gene therapy of the brain with Trojan horse liposomes. J Gene Med 2007b; 9:pp. 605-12; http://dx.doi.org/10.1002/jgm.1046
  • Yang T, Choi MK, Cui FD, Kim JS, Chung SJ, Shim CK, Kim DD. Preparation and evaluation of paclitaxel-loaded PEGylated immunoliposome. J Controlled Release 2009; 120, pp. 169-77; http://dx.doi.org/10.1016/j.jconrel.2007.05.011
  • Yokota M, Saido TC, Tani E, Kawashima S, Suzuki K. Three distinct phases of fodrin proteolysis induced in postischemic hippocampus; involvement of calpain and unidentified protease. Stroke, 1995; 26, pp. 1901-07; PMID:7570746; http://dx.doi.org/10.1161/01.STR.26.10.1901
  • Zhang Y, Pardridge WM. Rapid transferrin efflux from brain to blood across the blood-brain barrier. J Neurochem 2001; 76: 1597-1600; PMID:11238745; http://dx.doi.org/10.1046/j.1471-4159.2001.00222.x
  • Zhang Y, Schlachetzki F, Pardridge WM. Global non viral gene transfer to the primate brain following intravenous administration. Molecular Therapy 2003b; 7, pp. 11-18; http://dx.doi.org/10.1016/S1525-0016(02)00018-7
  • Zhang Y, Pardridge WM. Near complete rescue of experimental Parkinson disease with intravenous, non-viral GDNF gene therapy. Pharmaceutical Res 2008a; 26, pp. 1059-63; http://dx.doi.org/10.1007/s11095-008-9815-9
  • Zhang Y, Wang Y, Boado RJ, Pardridge WM. Lysosomal enzyme replacement of the brain with intravenous non-viral gene transfer. Pharmaceutical Res 2008b; 25, pp. 400-06; http://dx.doi.org/10.1007/s11095-007-9357-6
  • Zhang Y, Zhang YF, Bryant J, Charles A, Boado RJ, Pardridge WM, Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clinical Cancer Research 2004; 10, pp. 3667-77; PMID:15173073; http://dx.doi.org/10.1158/1078-0432.CCR-03-0740
  • Zhao Z, Nelson AR, Betsholtz C, Zlokovic B. Establishment and Dysfunction of the Blood-Brain Barrier. Cell 2015; 163(5):1064-78; PMID:26590417; http://dx.doi.org/10.1016/j.cell.2015.10.067
  • Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 2008; 57, 178-201; PMID:18215617; http://dx.doi.org/10.1016/j.neuron.2008.01.003
  • Zuccato C, Valenza M, Cattaneo E. Molecular mechanisms and potential therapeutical targets in Huntington's disease. Physiol Rev 2010; 90(3): 905-981; PMID:20664076; http://dx.doi.org/10.1152/physrev.00041.2009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.