673
Views
10
CrossRef citations to date
0
Altmetric
Review

Scaffolding proteins in the development and maintenance of the epidermal permeability barrier

& ORCID Icon
Article: e1341969 | Received 03 May 2017, Accepted 08 Jun 2017, Published online: 30 Jun 2017

References

  • Blanpain C, Fuchs E. Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 2009; 10:207-17; PMID:19209183; https://doi.org/10.1038/nrm2636
  • Koster MI. Making an epidermis. Ann N Y Acad Sci 2009; 1170:7-10; PMID:19686098; https://doi.org/10.1111/j.1749-6632.2009.04363.x
  • Fuchs E, Raghavan S. Getting under the skin of epidermal morphogenesis. Nat Rev Genet 2002; 3:199-209; PMID:11972157; https://doi.org/10.1038/nrg758
  • Byrne C, Hardman MJ, Nield K. Covering the limb - formation of the integument. J Anat 2003; 202:113-24; PMID:12587926; https://doi.org/10.1046/j.1469-7580.2003.00142.x
  • Alonso L, Fuchs E. Stem cells of the skin epithelium. Proc Natl Acad Sci USA 2003; 100:11830-5; PMID:12913119; https://doi.org/10.1073/pnas.1734203100
  • Martin P. Wound healing–aiming for perfect skin regeneration. Science 1997; 276:75-81; PMID:9082989; https://doi.org/10.1126/science.276.5309.75
  • Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med 1999; 341:738-46; PMID:10471461; https://doi.org/10.1056/NEJM199909023411006
  • Chang WY, Andrews J, Carter DE, Dagnino L. Differentiation and injury-repair signals modulate the interaction of E2F and pRB proteins with novel target genes in keratinocytes. Cell Cycle 2006; 5:1872-9; PMID:16931907; https://doi.org/10.4161/cc.5.16.3136
  • D'Souza SJ, Pajak A, Balazsi K, Dagnino L. Ca2+ and BMP-6 signaling regulate E2F during epidermal keratinocyte differentiation. J Biol Chem 2001; 276:23531-8; PMID:11319226; https://doi.org/10.1074/jbc.M100780200
  • Dagnino L, Fry CJ, Bartley SM, Farnham P, Gallie BL, Phillips RA. Expression patterns of the E2F family of transcription factors during murine epithelial development. Cell Growth Differ 1997; 8:553-63; PMID:9149906
  • Ivanova IA, D'Souza SJ, Dagnino L. E2F1 stability is regulated by a novel-PKC/p38beta MAP kinase signaling pathway during keratinocyte differentiation. Oncogene 2006; 25:430-7; PMID:16116476
  • Turksen K, Troy TC. Permeability barrier dysfunction in transgenic mice overexpressing claudin 6. Development 2002; 129:1775-84; PMID:11923212
  • Furuse M, Hata M, Furuse Y, Yoshida Y, Haratake A, Sugitani Y, Noda T, Kubo A, Tsukita S. Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol 2002; 156:1099-111; PMID:11889141; https://doi.org/10.1083/jcb.200110122
  • Kalinin A, Marekov LN, Steinert PM. Assembly of the epidermal cornified cell envelope. J Cell Science 2001; 114:3069-70; PMID:11590230
  • Kirschner N, Brandner JM. Barriers and more: functions of tight junction proteins in the skin. Ann N Y Acad Sci 2012; 1257:158-66; PMID:22671602; https://doi.org/10.1111/j.1749-6632.2012.06554.x
  • Fuchs E. Epidermal differentiation and keratin gene expression. Princess Takamatsu Symp 1994; 24:290-302; PMID:8983083
  • Henry J, Toulza E, Hsu CY, Pellerin L, Balica S, Mazereeuw-Hautier J, Paul C, Serre G, Jonca N, Simon M. Update on the epidermal differentiation complex. Front Biosci (Landmark edition) 2012; 17:1517-32; PMID:22201818; https://doi.org/10.2741/4001
  • Gkegkes ID, Aroni K, Agrogiannis G, Patsouris ES, Konstantinidou AE. Expression of caspase-14 and keratin-19 in the human epidermis and appendages during fetal skin development. Arch Dermatol Res 2013; 305:379-87; PMID:23377137; https://doi.org/10.1007/s00403-013-1319-8
  • Denecker G, Hoste E, Gilbert B, Hochepied T, Ovaere P, Lippens S, Van den Broecke C, Van Damme P, D'Herde K, Hachem JP, et al. Caspase-14 protects against epidermal UVB photodamage and water loss. Nat Cell Biol 2007; 9:666-74; PMID:17515931; https://doi.org/10.1038/ncb1597
  • Eckhart L, Lippens S, Tschachler E, Declercq W. Cell death by cornification. Biochim Biophys Acta 2013; 1833:3471-80; PMID:23792051; https://doi.org/10.1016/j.bbamcr.2013.06.010
  • Boer M, Duchnik E, Maleszka R, Marchlewicz M. Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function. Postepy Dermatol Alergol 2016; 33:1-5; PMID:26985171
  • O'Goshi K, Serup J. Inter-instrumental variation of skin capacitance measured with the Corneometer. Skin Res Technol 2005; 11:107-9; PMID:15807808; https://doi.org/10.1111/j.1600-0846.2005.00086.x
  • Pailler-Mattei C, Nicoli S, Pirot F, Vargiolu R, Zahouani H. A new approach to describe the skin surface physical properties in vivo. Colloids Surf B Biointerfaces 2009; 68:200-6; PMID:19042108; https://doi.org/10.1016/j.colsurfb.2008.10.005
  • Finnin BC, Morgan TM. Transdermal penetration enhancers: applications, limitations, and potential. J Pharmaceutical Sci 1999; 88:955-8; PMID:10514338; https://doi.org/10.1021/js990154g
  • Stevenson BR, Siciliano JD, Moosekar MS, Goodenough DA. Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol 1986; 103:755-566; PMID:3528172; https://doi.org/10.1083/jcb.103.3.755
  • Brandner JM, Kief S, Grund C, Rendl M, Houdek P, Kuhn C, Tschachler E, Franke WW, Moll I. Organization and formation of the tight junction system in human epidermis and cultured keratinocytes. Eur J Cell Biol 2002; 81:253-63; PMID:12067061; https://doi.org/10.1078/0171-9335-00244
  • Brandner JM, Kief S, Wladykowski E, Houdek P, Moll I. Tight junction proteins in the skin. Skin Pharmacol Physiol 2006; 19:71-7; PMID:16685145; https://doi.org/10.1159/000091973
  • Morita K, Itoh M, Saitou M, Ando-Akatsuka Y, Furuse M, Yoneda K, Imamura S, Fujimoto K, Tsukita S. Subcellular distribution of tight junction-associated proteins (occludin, ZO-1, ZO-2) in rodent skin. J Invest Dermatol 1998; 110:862-6; PMID:9620290; https://doi.org/10.1046/j.1523-1747.1998.00209.x
  • Gonzalez-Mariscal L, Dominguez-Calderon A, Raya-Sandino A, Ortega-Olvera JM, Vargas-Sierra O, Martinez-Revollar G. Tight junctions and the regulation of gene expression. Semin Cell Dev Biol 2014; 36:213-23; PMID:25152334; https://doi.org/10.1016/j.semcdb.2014.08.009
  • Herve JC, Derangeon M, Sarrouilhe D, Bourmeyster N. Influence of the scaffolding protein Zonula Occludens (ZOs) on membrane channels. Biochim Biophys Acta 2014; 1838:595-604; PMID:23867773; https://doi.org/10.1016/j.bbamem.2013.07.006
  • Gunzel D, Yu AS. Claudins and the modulation of tight junction permeability. Physiol Rev 2013; 93:525-69; PMID:23589827; https://doi.org/10.1152/physrev.00019.2012
  • Turksen K, Troy TC. Barriers built on claudins. J Cell Sci 2004; 117:2435-47; PMID:15159449; https://doi.org/10.1242/jcs.01235
  • Umeda K, Ikenouchi J, Katahira-Tayama S, Furuse K, Sasaki H, Nakayama M, Matsui T, Tsukita S, Furuse M, Tsukita S. ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell 2006; 126:741-54; PMID:16923393; https://doi.org/10.1016/j.cell.2006.06.043
  • Troy TC, Rahbar R, Arabzadeh A, Cheung RM, Turksen K. Delayed epidermal permeability barrier formation and hair follicle aberrations in Inv-Cldn6 mice. Mech Dev 2005; 122:805-19; PMID:15908185; https://doi.org/10.1016/j.mod.2005.03.001
  • Peltonen S, Riehokainen J, Pummi K, Peltonen J. Tight junction components occludin, ZO-1, and claudin-1, -4 and -5 in active and healing psoriasis. Br J Dermatol 2007; 156:466-72; PMID:17300235; https://doi.org/10.1111/j.1365-2133.2006.07642.x
  • Pummi K, Malminen M, Aho H, Karvonen SL, Peltonen J, Peltonen S. Epidermal tight junctions: ZO-1 and occludin are expressed in mature, developing, and affected skin and in vitro differentiating keratinocytes. J Invest Dermatol 2001; 117:1050-8; PMID:11710912; https://doi.org/10.1046/j.0022-202x.2001.01493.x
  • Enikanolaiye A, Lariviere N, Troy TC, Arabzadeh A, Atasoy E, Turksen K. Involucrin-claudin-6 tail deletion mutant (CDelta206) transgenic mice: a model of delayed epidermal permeability barrier formation and repair. Dis Models Mech 2010; 3:167-80; https://doi.org/10.1242/dmm.002634
  • McCarthy KM, Skare IB, Stankewich MC, Furuse M, Tsukita S, Rogers RA, Lynch RD, Schneeberger EE. Occludin is a functional component of the tight junction. J Cell Sci 1996; 109(Pt 9):2287-98; PMID:8886979
  • Li Y, Fanning AS, Anderson JM, Lavie A. Structure of the conserved cytoplasmic C-terminal domain of occludin: identification of the ZO-1 binding surface. J Mol Biol 2005; 352:151-64; PMID:16081103; https://doi.org/10.1016/j.jmb.2005.07.017
  • Feng S, Cen J, Huang Y, Shen H, Yao L, Wang Y, Chen Z. Matrix metalloproteinase-2 and -9 secreted by leukemic cells increase the permeability of blood-brain barrier by disrupting tight junction proteins. PLoS One 2011; 6:e20599; PMID:21857898; https://doi.org/10.1371/journal.pone.0020599
  • Saitou M, Furuse M, Sasaki H, Schulzke JD, Fromm M, Takano H, Noda T, Tsukita S. Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 2000; 11:4131-42; PMID:11102513; https://doi.org/10.1091/mbc.11.12.4131
  • Gumbiner B, Lowenkopf T, Apatira D. Identification of a 160-kDa polypeptide that binds to the tight junction protein ZO-1. Proc Natl Acad Sci U S A 1991; 88:3460-4; PMID:2014265; https://doi.org/10.1073/pnas.88.8.3460
  • Jesaitis LA, Goodenough DA. Molecular characterization and tissue distribution of ZO-2, a tight junction protein homologous to ZO-1 and the Drosophila discs-large tumor suppressor protein. J Cell Biol 1994; 124:949-61; PMID:8132716; https://doi.org/10.1083/jcb.124.6.949
  • Haskins J, Gu L, Wittchen ES, Hibbard J, Stevenson BR. ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. J Cell Biol 1998; 141:199-208; PMID:9531559; https://doi.org/10.1083/jcb.141.1.199
  • Willott E, Balda MS, Fanning AS, Jameson B, Van Itallie C, Anderson JM. The tight junction protein ZO-1 is homologous to the Drosophila discs-large tumor suppressor protein of septate junctions. Proc Natl Acad Sci U S A 1993; 90:7834-8; PMID:8395056; https://doi.org/10.1073/pnas.90.16.7834
  • Van Itallie CM, Anderson JM. Architecture of tight junctions and principles of molecular composition. Semin Cell Dev Biol 2014; 36:157-65; PMID:25171873; https://doi.org/10.1016/j.semcdb.2014.08.011
  • Gottardi CJ, Arpin M, Fanning AS, Louvard D. The junction-associated protein, zonula occludens-1, localizes to the nucleus before the maturation and during the remodeling of cell-cell contacts. Proc Natl Acad Sci U S A 1996; 93:10779-84; PMID:8855257; https://doi.org/10.1073/pnas.93.20.10779
  • Siljamaki E, Raiko L, Toriseva M, Nissinen L, Nareoja T, Peltonen J, Kähäri VM, Peltonen S. p38delta mitogen-activated protein kinase regulates the expression of tight junction protein ZO-1 in differentiating human epidermal keratinocytes. Arch Dermatol Res 2014; 306:131-41; PMID:23856837; https://doi.org/10.1007/s00403-013-1391-0
  • Citi S, Sabanay H, Jakes R, Geiger B, Kendrick-Jones J. Cingulin, a new peripheral component of tight junctions. Nature 1988; 333:272-6; PMID:3285223; https://doi.org/10.1038/333272a0
  • Guillemot L, Schneider Y, Brun P, Castagliuolo I, Pizzuti D, Martines D, Jond L, Bongiovanni M, Citi S. Cingulin is dispensable for epithelial barrier function and tight junction structure, and plays a role in the control of claudin-2 expression and response to duodenal mucosa injury. J Cell Sci 2012; 125:5005-14; PMID:22946046; https://doi.org/10.1242/jcs.101261
  • Wittchen ES, Haskins J, Stevenson BR. Protein interactions at the tight junction. Actin has multiple binding partners, and ZO-1 forms independent complexes with ZO-2 and ZO-3. J Biol Chem 1999; 274:35179-85; PMID:10575001; https://doi.org/10.1074/jbc.274.49.35179
  • Yano T, Matsui T, Tamura A, Uji M, Tsukita S. The association of microtubules with tight junctions is promoted by cingulin phosphorylation by AMPK. J Cell Biol 2013; 203:605-14; PMID:24385485; https://doi.org/10.1083/jcb.201304194
  • Vasioukhin V, Bauer C, Yin M, Fuchs E. Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell 2000; 100:209-19; PMID:10660044; https://doi.org/10.1016/S0092-8674(00)81559-7
  • Elsholz F, Harteneck C, Muller W, Friedland K. Calcium–a central regulator of keratinocyte differentiation in health and disease. Eur J Dermatol 2014; 24:650-61; PMID:25514792
  • Vasioukhin V, Fuchs E. Actin dynamics and cell-cell adhesion in epithelia. Curr Opin Cell Biol 2001; 13:76-84; PMID:11163137; https://doi.org/10.1016/S0955-0674(00)00177-0
  • Capaldo CT, Macara IG. Depletion of E-cadherin disrupts establishment but not maintenance of cell junctions in Madin-Darby canine kidney epithelial cells. Mol Biol Cell 2007; 18:189-200; PMID:17093058; https://doi.org/10.1091/mbc.E06-05-0471
  • Watson RE, Poddar R, Walker JM, McGuill I, Hoare LM, Griffiths CE, O'neill CA. Altered claudin expression is a feature of chronic plaque psoriasis. J Pathol 2007; 212:450-8; PMID:17582238; https://doi.org/10.1002/path.2200
  • Morita K, Tsukita S, Miyachi Y. Tight junction-associated proteins (occludin, ZO-1, claudin-1, claudin-4) in squamous cell carcinoma and Bowen's disease. Br J Dermatol 2004; 151:328-34; PMID:15327539; https://doi.org/10.1111/j.1365-2133.2004.06029.x
  • Hintsala HR, Siponen M, Haapasaari KM, Karihtala P, Soini Y. Claudins 1, 2, 3, 4, 5 and 7 in solar keratosis and squamocellular carcinoma of the skin. Int J Clin Exp Pathol 2013; 6:2855-63; PMID:24294371
  • Telgenhoff D, Ramsay S, Hilz S, Slusarewicz P, Shroot B. Claudin 2 mRNA and protein are present in human keratinocytes and may be regulated by all-trans-retinoic acid. Skin Pharmacol Physiol 2008; 21:211-7; PMID:18509255; https://doi.org/10.1159/000135637
  • Tatari MN, De Craene B, Soen B, Taminau J, Vermassen P, Goossens S, Haigh K, Cazzola S, Lambert J, Huylebroeck D, et al. ZEB2-transgene expression in the epidermis compromises the integrity of the epidermal barrier through the repression of different tight junction proteins. Cell Mol Life Sci 2014; 71:3599-609; PMID:24573695
  • Brandner JM, Zorn-Kruppa M, Yoshida T, Moll I, Beck LA, De Benedetto A. Epidermal tight junctions in health and disease. Tissue Barriers 2015; 3:e974451; PMID:25838981; https://doi.org/10.4161/21688370.2014.974451
  • Tunggal JA, Helfrich I, Schmitz A, Schwartz H, Gunzel D, Fromm M, Kemler R, Krieg T, Niessen CM. E-cadherin is essential for in vivo epidermal barrier function by regulating tight junctions. EMBO J 2005; 24:1146-56; PMID:15775979; https://doi.org/10.1038/sj.emboj.7600605
  • Tinkle CL, Pasolli HA, Stokes N, Fuchs E. New insights into cadherin function in epidermal sheet formation and maintenance of tissue integrity. Proc Natl Acad Sci U S A 2008; 105:15405-10; PMID:18809908; https://doi.org/10.1073/pnas.0807374105
  • Shen L, Weber CR, Raleigh DR, Yu D, Turner JR. Tight junction pore and leak pathways: a dynamic duo. Annu Rev Physiol 2011; 73:283-309; PMID:20936941; https://doi.org/10.1146/annurev-physiol-012110-142150
  • Hashimoto K. Intercellular spaces of the human epidermis as demonstrated with lanthanum. J Invest Dermatol 1971; 57:17-31; PMID:4104141; https://doi.org/10.1111/1523-1747.ep12292052
  • Kubo A, Nagao K, Yokouchi M, Sasaki H, Amagai M. External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers. J Exp Med 2009; 206:2937-46; PMID:19995951; https://doi.org/10.1084/jem.20091527
  • Helfrich I, Schmitz A, Zigrino P, Michels C, Haase I, le Bivic A, Leitges M, Niessen CM. Role of aPKC isoforms and their binding partners Par3 and Par6 in epidermal barrier formation. J Invest Dermatol 2007; 127:782-91; PMID:17110935; https://doi.org/10.1038/sj.jid.5700621
  • Yuki T, Hachiya A, Kusaka A, Sriwiriyanont P, Visscher MO, Morita K, Muto M, Miyachi Y, Sugiyama Y, Inoue S. Characterization of tight junctions and their disruption by UVB in human epidermis and cultured keratinocytes. J Invest Dermatol 2011; 131:744-52; PMID:21160495; https://doi.org/10.1038/jid.2010.385
  • Kirschner N, Rosenthal R, Furuse M, Moll I, Fromm M, Brandner JM. Contribution of tight junction proteins to ion, macromolecule, and water barrier in keratinocytes. J Invest Dermatol 2013; 133:1161-9; PMID:23407391; https://doi.org/10.1038/jid.2012.507
  • De Benedetto A, Rafaels NM, McGirt LY, Ivanov AI, Georas SN, Cheadle C, Berger AE, Zhang K, Vidyasagar S, Yoshida T, et al. Tight junction defects in patients with atopic dermatitis. J Allergy Clin Immunol 2011; 127:773-86. e1-7; https://doi.org/10.1016/j.jaci.2010.10.018
  • Mertens AE, Rygiel TP, Olivo C, van der Kammen R, Collard JG. The Rac activator Tiam1 controls tight junction biogenesis in keratinocytes through binding to and activation of the Par polarity complex. J Cell Biol 2005; 170:1029-37; PMID:16186252; https://doi.org/10.1083/jcb.200502129
  • Yuki T, Haratake A, Koishikawa H, Morita K, Miyachi Y, Inoue S. Tight junction proteins in keratinocytes: localization and contribution to barrier function. Exp Dermatol 2007; 16:324-30; PMID:17359339; https://doi.org/10.1111/j.1600-0625.2006.00539.x
  • Kirschner N, Haftek M, Niessen CM, Behne MJ, Furuse M, Moll I, Brandner JM. CD44 regulates tight-junction assembly and barrier function. J Invest Dermatol 2011; 131:932-43; PMID:21191420; https://doi.org/10.1038/jid.2010.390
  • Bazzoun D, Lelievre S, Talhouk R. Polarity proteins as regulators of cell junction complexes: implications for breast cancer. Pharmacol Ther 2013; 138:418-27; https://doi.org/10.1016/j.pharmthera.2013.02.004
  • Nance J. PAR proteins and the establishment of cell polarity during C. elegans development. Bioessays 2005; 27:126-35; PMID:15666355; https://doi.org/10.1002/bies.20175
  • Hurd TW, Gao L, Roh MH, Macara IG, Margolis B. Direct interaction of two polarity complexes implicated in epithelial tight junction assembly. Nat Cell Biol 2003; 5:137-42; PMID:12545177; https://doi.org/10.1038/ncb923
  • Kemphues KJ, Priess JR, Morton DG, Cheng NS. Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 1988; 52:311-20; https://doi.org/10.1016/S0092-8674(88)80024-2
  • Kusakabe M, Nishida E. The polarity-inducing kinase Par-1 controls Xenopus gastrulation in cooperation with 14-3-3 and aPKC. EMBO J 2004; 23:4190-201; PMID:15343271; https://doi.org/10.1038/sj.emboj.7600381
  • Ali NJ, Dias Gomes M, Bauer R, Brodesser S, Niemann C, Iden S. Essential role of polarity protein Par3 for epidermal homeostasis through regulation of barrier function, keratinocyte differentiation, and stem cell maintenance. J Invest Dermatol 2016; 136:2406-16; PMID:27452221; https://doi.org/10.1016/j.jid.2016.07.011
  • Georgiou M, Baum B. Polarity proteins and Rho GTPases cooperate to spatially organise epithelial actin-based protrusions. J Cell Sci 2010; 123:1089-98; PMID:20197404; https://doi.org/10.1242/jcs.060772
  • Zhang H, Macara IG. The PAR-6 polarity protein regulates dendritic spine morphogenesis through p190 RhoGAP and the Rho GTPase. Dev Cell 2008; 14:216-26; PMID:18267090; https://doi.org/10.1016/j.devcel.2007.11.020
  • Joberty G, Petersen C, Gao L, Macara IG. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat Cell Biol 2000; 2:531-9; PMID:10934474; https://doi.org/10.1038/35019573
  • McCaffrey LM, Macara IG. Signaling pathways in cell polarity. Cold Spring Harb Perspect Biol 2012; 4:pii: a009654; PMID:22553378; https://doi.org/10.1101/cshperspect.a009654
  • Yeaman C, Grindstaff KK, Nelson WJ. New perspectives on mechanisms involved in generating epithelial cell polarity. Physiol Rev 1999; 79:73-98; PMID:9922368
  • Chen X, Macara IG. Par-3 controls tight junction assembly through the Rac exchange factor Tiam1. Nat Cell Biol 2005; 7:262-9; PMID:15723052; https://doi.org/10.1038/ncb1226
  • Iden S, van Riel WE, Schafer R, Song JY, Hirose T, Ohno S, Collard JG. Tumor type-dependent function of the par3 polarity protein in skin tumorigenesis. Cancer Cell 2012; 22:389-403; PMID:22975380; https://doi.org/10.1016/j.ccr.2012.08.004
  • Niessen MT, Scott J, Zielinski JG, Vorhagen S, Sotiropoulou PA, Blanpain C, Leitges M, Niessen CM. aPKClambda controls epidermal homeostasis and stem cell fate through regulation of division orientation. J Cell Biol 2013; 202:887-900; PMID:24019538; https://doi.org/10.1083/jcb.201307001
  • Takai Y, Ikeda W, Ogita H, Rikitake Y. The immunoglobulin-like cell adhesion molecule nectin and its associated protein afadin. Annu Rev Cell Dev Biol 2008; 24:309-42; PMID:18593353; https://doi.org/10.1146/annurev.cellbio.24.110707.175339
  • Yoshida T, Iwata T, Takai Y, Birchmeier W, Yamato M, Okano T. Afadin requirement for cytokine expressions in keratinocytes during chemically induced inflammation in mice. Genes Cells 2014; 19:842-52; https://doi.org/10.1111/gtc.12184
  • Perez White BE, Ventrella R, Kaplan N, Cable CJ, Thomas PM, Getsios S. EphA2 proteomics in human keratinocytes reveals a novel association with afadin and epidermal tight junctions. J Cell Sci 2017; 130:111-8; PMID:27815408; https://doi.org/10.1242/jcs.188169
  • Guo H, Miao H, Gerber L, Singh J, Denning MF, Gilliam AC, Wang B. Disruption of EphA2 receptor tyrosine kinase leads to increased susceptibility to carcinogenesis in mouse skin. Cancer Res 2006; 66:7050-8; PMID:16849550; https://doi.org/10.1158/0008-5472.CAN-06-0004
  • Niessen CM. Tight junctions/adherens junctions: basic structure and function. J Invest Dermatol 2007; 127:2525-32; PMID:17934504; https://doi.org/10.1038/sj.jid.5700865
  • Dagnino L. Integrin-linked kinase: a Scaffold protein unique among its ilk. J Cell Commun Signal 2011; 5:81-3; PMID:21484187; https://doi.org/10.1007/s12079-011-0124-4
  • Vespa A, Darmon AJ, Turner CE, D'Souza SJ, Dagnino L. Ca2+-dependent localization of integrin-linked kinase to cell junctions in differentiating keratinocytes. J Biol Chem 2003; 278:11528-35; PMID:12547824; https://doi.org/10.1074/jbc.M208337200
  • Nakrieko KA, Welch I, Dupuis H, Bryce D, Pajak A, St Arnaud R, Dedhar S, D'Souza SJ, Dagnino L. Impaired hair follicle morphogenesis and polarized keratinocyte movement upon conditional inactivation of integrin-linked kinase in the epidermis. Mol Biol Cell 2008; 19:1462-73; PMID:18234842; https://doi.org/10.1091/mbc.E07-06-0526
  • Rudkouskaya A, Welch I, Dagnino L. ILK modulates epithelial polarity and matrix formation in hair follicles. Mol Biol Cell 2014; 25:620-32; PMID:24371086; https://doi.org/10.1091/mbc.E13-08-0499
  • Lorenz K, Grashoff C, Torka R, Sakai T, Langbein L, Bloch W, Aumailley M, Fässler R. Integrin-linked kinase is required for epidermal and hair follicle morphogenesis. J Cell Biol 2007; 177:501-13; PMID:17485490; https://doi.org/10.1083/jcb.200608125
  • Tu CL, Chang W, Bikle DD. The extracellular calcium-sensing receptor is required for calcium-induced differentiation in human keratinocytes. J Biol Chem 2001; 276:41079-85; PMID:11500521; https://doi.org/10.1074/jbc.M107122200
  • Tu CL, Chang W, Bikle DD. The calcium-sensing receptor-dependent regulation of cell-cell adhesion and keratinocyte differentiation requires Rho and filamin A. J Invest Dermatol 2011; 131:1119-28; PMID:21209619; https://doi.org/10.1038/jid.2010.414
  • Tu CL, Crumrine DA, Man MQ, Chang W, Elalieh H, You M, Elias PM, Bikle DD. Ablation of the calcium-sensing receptor in keratinocytes impairs epidermal differentiation and barrier function. J Invest Dermatol 2012; 132:2350-9; PMID:22622426; https://doi.org/10.1038/jid.2012.159
  • Sayedyahossein S, Rudkouskaya A, Leclerc V, Dagnino L. Integrin-Linked Kinase Is Indispensable for Keratinocyte Differentiation and Epidermal Barrier Function. J Invest Dermatol 2016; 136:425-35; PMID:26967476; https://doi.org/10.1016/j.jid.2015.10.056
  • Ho E, Ivanova IA, Dagnino L. Integrin-linked kinase and ELMO2 modulate recycling endosomes in keratinocytes. Biochim Biophys Acta 2016; 1863:2892-904; PMID:27627840; https://doi.org/10.1016/j.bbamcr.2016.09.007
  • Svoboda M, Bilkova Z, Muthny T. Could tight junctions regulate the barrier function of the aged skin? J Dermatol Sci 2016; 81:147-52; PMID:26639794; https://doi.org/10.1016/j.jdermsci.2015.11.009
  • Gilchrest BA. Photoaging. J Invest Dermatol 2013; 133:E2-6; PMID:23820721; https://doi.org/10.1038/skinbio.2013.176
  • Yaar M, Gilchrest BA. Photoageing: mechanism, prevention and therapy. Br J Dermatol 2007; 157:874-87; PMID:17711532; https://doi.org/10.1111/j.1365-2133.2007.08108.x
  • Li Y, Liu Y, Xu Y, Voorhees JJ, Fisher GJ. UV irradiation induces Snail expression by AP-1 dependent mechanism in human skin keratinocytes. J Dermatol Sci 2010; 60:105-13; PMID:20851575; https://doi.org/10.1016/j.jdermsci.2010.08.003
  • Xu Y, Shao Y, Zhou J, Voorhees JJ, Fisher GJ. Ultraviolet irradiation-induces epidermal growth factor receptor (EGFR) nuclear translocation in human keratinocytes. J Cell Biochem 2009; 107:873-80; PMID:19415674; https://doi.org/10.1002/jcb.22195
  • Yamamoto T, Kurasawa M, Hattori T, Maeda T, Nakano H, Sasaki H. Relationship between expression of tight junction-related molecules and perturbed epidermal barrier function in UVB-irradiated hairless mice. Arch Dermatol Res 2008; 300:61-8; PMID:18064478; https://doi.org/10.1007/s00403-007-0817-y
  • Kirchmeier P, Sayar E, Hotz A, Hausser I, Islek A, Yilmaz A, Artan R, Fischer J. Novel mutation in the CLDN1 gene in a Turkish family with neonatal ichthyosis sclerosing cholangitis (NISCH) syndrome. Br J Dermatol 2014; 170:976-8; PMID:24641442; https://doi.org/10.1111/bjd.12724
  • Feldmeyer L, Huber M, Fellmann F, Beckmann JS, Frenk E, Hohl D. Confirmation of the origin of NISCH syndrome. Hum Mutat 2006; 27:408-10; PMID:16619213; https://doi.org/10.1002/humu.20333
  • Paganelli M, Stephenne X, Gilis A, Jacquemin E, Henrion Caude A, Girard M, Gonzales E, Revencu N, Reding R, Wanty C, et al. Neonatal ichthyosis and sclerosing cholangitis syndrome: extremely variable liver disease severity from claudin-1 deficiency. J Pediatr Gastroenterol Nutr 2011; 53:350-4; PMID:21865982; https://doi.org/10.1097/MPG.0b013e3182169433
  • Oji V, Traupe H. Ichthyoses: differential diagnosis and molecular genetics. Eur J Dermatol 2006; 16:349-59; PMID:16935789
  • Gruber R, Elias PM, Crumrine D, Lin TK, Brandner JM, Hachem JP, Presland RB, Fleckman P, Janecke AR, Sandilands A, et al. Filaggrin genotype in ichthyosis vulgaris predicts abnormalities in epidermal structure and function. Am J Pathol 2011; 178:2252-63; PMID:21514438; https://doi.org/10.1016/j.ajpath.2011.01.053
  • Lavrijsen AP, Oestmann E, Hermans J, Bodde HE, Vermeer BJ, Ponec M. Barrier function parameters in various keratinization disorders: transepidermal water loss and vascular response to hexyl nicotinate. Br J Dermatol 1993; 129:547-53; PMID:8251350; https://doi.org/10.1111/j.1365-2133.1993.tb00482.x
  • Perusquia-Ortiz AM, Oji V, Sauerland MC, Tarinski T, Zaraeva I, Seller N, Metze D, Aufenvenne K, Hausser I, Traupe H. Complete filaggrin deficiency in ichthyosis vulgaris is associated with only moderate changes in epidermal permeability barrier function profile. J Euro Acad Dermatol Venereol 2013; 27:1552-8; PMID:23297869; https://doi.org/10.1111/jdv.12079
  • Armengot-Carbo M, Hernandez-Martin A, Torrelo A. The role of filaggrin in the skin barrier and disease development. Actas Dermosifiliogr 2015; 106:86-95; PMID:24674607; https://doi.org/10.1016/j.ad.2013.10.019
  • Kezic S, Novak N, Jakasa I, Jungersted JM, Simon M, Brandner JM, Middelkamp-Hup MA, Weidinger S. Skin barrier in atopic dermatitis. Front Biosci (Landmark edition) 2014; 19:542-56; PMID:24389202; https://doi.org/10.2741/4225
  • Sandilands A, O'Regan GM, Liao H, Zhao Y, Terron-Kwiatkowski A, Watson RM, Cassidy AJ, Goudie DR, Smith FJ, McLean WH, et al. Prevalent and rare mutations in the gene encoding filaggrin cause ichthyosis vulgaris and predispose individuals to atopic dermatitis. J Invest Dermatol 2006; 126:1770-5; PMID:16810297; https://doi.org/10.1038/sj.jid.5700459
  • Rodriguez E, Baurecht H, Herberich E, Wagenpfeil S, Brown SJ, Cordell HJ, Irvine AD, Weidinger S. Meta-analysis of filaggrin polymorphisms in eczema and asthma: robust risk factors in atopic disease. J Allergy Clin Immunol 2009; 123:1361-70. e7; PMID:19501237; https://doi.org/10.1016/j.jaci.2009.03.036
  • Baurecht H, Irvine AD, Novak N, Illig T, Buhler B, Ring J, Wagenpfeil S, Weidinger S. Toward a major risk factor for atopic eczema: meta-analysis of filaggrin polymorphism data. J Allergy Clin Immunol 2007; 120:1406-12; PMID:17980411; https://doi.org/10.1016/j.jaci.2007.08.067
  • Brown SJ, McLean WH. One remarkable molecule: filaggrin. J Invest Dermatol 2012; 132:751-62; PMID:22158554; https://doi.org/10.1038/jid.2011.393
  • Sugawara T, Iwamoto N, Akashi M, Kojima T, Hisatsune J, Sugai M, Furuse M. Tight junction dysfunction in the stratum granulosum leads to aberrant stratum corneum barrier function in claudin-1-deficient mice. J Dermatol Sci 2013; 70:12-8; PMID:23433550; https://doi.org/10.1016/j.jdermsci.2013.01.002
  • Kim HJ, Cronin M, Ahrens K, Papastavros V, Santoro D, Marsella R. A comparative study of epidermal tight junction proteins in a dog model of atopic dermatitis. Vet Dermatol 2016; 27:40-e11; PMID:26663564; https://doi.org/10.1111/vde.12276
  • Honzke S, Wallmeyer L, Ostrowski A, Radbruch M, Mundhenk L, Schafer-Korting M, Hedtrich S. Influence of Th2 Cytokines on the cornified envelope, tight junction proteins, and ss-Defensins in filaggrin-deficient skin equivalents. J Invest Dermatol 2016; 136:631-9; PMID:27015451; https://doi.org/10.1016/j.jid.2015.11.007
  • Elias PM. The skin barrier as an innate immune element. Semin Immunopathol 2007; 29:3-14; PMID:17621950; https://doi.org/10.1007/s00281-007-0060-9
  • Ong PY, Leung DY. Bacterial and viral infections in atopic dermatitis: A comprehensive review. Clin Rev Allergy Immunol 2016; 51:329-37; https://doi.org/10.1007/s12016-016-8548-5
  • Petermann P, Thier K, Rahn E, Rixon FJ, Bloch W, Ozcelik S, Krummenacher C, Barron MJ, Dixon MJ, Scheu S, et al. Entry mechanisms of herpes simplex virus 1 into murine epidermis: involvement of nectin-1 and herpesvirus entry mediator as cellular receptors. J Virol 2015; 89:262-74; PMID:25320325; https://doi.org/10.1128/JVI.02917-14
  • Rahn E, Thier K, Petermann P, Rubsam M, Staeheli P, Iden S, Niessen CM, Knebel-Mörsdorf D. Epithelial barriers in murine skin during herpes simplex virus 1 infection: The role of tight junction formation. J Invest Dermatol 2017; 137:884-93; PMID:27939379; https://doi.org/10.1016/j.jid.2016.11.027
  • Facciuto F, Bugnon Valdano M, Marziali F, Massimi P, Banks L, Cavatorta AL, Gardiol D. Human papillomavirus (HPV)-18 E6 oncoprotein interferes with the epithelial cell polarity Par3 protein. Mol Oncol 2014; 8:533-43; PMID:24462519; https://doi.org/10.1016/j.molonc.2014.01.002
  • Basler K, Brandner JM. Tight junctions in skin inflammation. Pflugers Archiv 2017; 469:3-14; PMID:27853878; https://doi.org/10.1007/s00424-016-1903-9
  • Breuer K, Wittmann M, Kempe K, Kapp A, Mai U, Dittrich-Breiholz O, Kracht M, Mrabet-Dahbi S, Werfel T. Alpha-toxin is produced by skin colonizing Staphylococcus aureus and induces a T helper type 1 response in atopic dermatitis. Clin Exp Allergy 2005; 35:1088-95; PMID:16120092; https://doi.org/10.1111/j.1365-2222.2005.02295.x
  • Iwatsuki K, Yamasaki O, Morizane S, Oono T. Staphylococcal cutaneous infections: invasion, evasion and aggression. J Dermatol Sci 2006; 42:203-14; PMID:16679003; https://doi.org/10.1016/j.jdermsci.2006.03.011
  • Ohnemus U, Kohrmeyer K, Houdek P, Rohde H, Wladykowski E, Vidal S, Horstkotte MA, Aepfelbacher M, Kirschner N, Behne MJ, et al. Regulation of epidermal tight-junctions (TJ) during infection with exfoliative toxin-negative Staphylococcus strains. J Invest Dermatol 2008; 128:906-16; PMID:17914452; https://doi.org/10.1038/sj.jid.5701070
  • Niyonsaba F, Nagaoka I, Ogawa H, Okumura K. Multifunctional antimicrobial proteins and peptides: natural activators of immune systems. Curr Pharm Des 2009; 15:2393-413; PMID:19601839; https://doi.org/10.2174/138161209788682271
  • Schauber J, Dorschner RA, Coda AB, Buchau AS, Liu PT, Kiken D, Helfrich YR, Kang S, Elalieh HZ, Steinmeyer A, et al. Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D-dependent mechanism. J Clin Invest 2007; 117:803-11; PMID:17290304; https://doi.org/10.1172/JCI30142
  • Akiyama T, Niyonsaba F, Kiatsurayanon C, Nguyen TT, Ushio H, Fujimura T, Ueno T, Okumura K, Ogawa H, Ikeda S. The human cathelicidin LL-37 host defense peptide upregulates tight junction-related proteins and increases human epidermal keratinocyte barrier function. J Innate Immun 2014; 6:739-53; PMID:24862212; https://doi.org/10.1159/000362789
  • Nakatsuji T, Chen TH, Narala S, Chun KA, Two AM, Yun T, Shafiq F, Kotol PF, Bouslimani A, Melnik AV, et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med 2017; 9:pii: eaah4680; PMID:28228596; https://doi.org/10.1126/scitranslmed.aah4680
  • Sayedyahossein S, Xu SX, Rudkouskaya A, McGavin MJ, McCormick JK, Dagnino L. Staphylococcus aureus keratinocyte invasion is mediated by integrin-linked kinase and Rac1. FASEB J 2015; 29:711-23; PMID:25416549; https://doi.org/10.1096/fj.14-262774
  • Judah D, Rudkouskaya A, Wilson R, Carter DE, Dagnino L. Multiple roles of integrin-linked kinase in epidermal development, maturation and pigmentation revealed by molecular profiling. PLoS One 2012; 7:e36704; PMID:22574216; https://doi.org/10.1371/journal.pone.0036704

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.