943
Views
12
CrossRef citations to date
0
Altmetric
Review

Claudins in morphogenesis: Forming an epithelial tube

, &
Article: e1361899 | Received 12 Jun 2017, Accepted 26 Jul 2017, Published online: 24 Aug 2017

References

  • Haddad N, El Andalousi J, Khairallah H, Yu M, Ryan AK, Gupta IR. The tight junction protein claudin-3 shows conserved expression in the nephric duct and ureteric bud and promotes tubulogenesis in vitro. Am J Physiol Renal Physiol. 2011;301:F1057-65. doi:10.1152/ajprenal.00497.2010. PMID:21775479
  • Simard A, Di Pietro E, Young CR, Plaza S, Ryan AK. Alterations in heart looping induced by overexpression of the tight junction protein Claudin-1 are dependent on its C-terminal cytoplasmic tail. Mech Dev. 2006;123:210-27. doi:10.1016/j.mod.2005.12.004. PMID:16500087
  • Collins MM, Baumholtz AI, Simard A, Gregory M, Cyr DG, Ryan AK. Claudin-10 is required for relay of left-right patterning cues from Hensen's node to the lateral plate mesoderm. Dev Biol. 2015;401:236-48. doi:10.1016/j.ydbio.2015.02.019. PMID:25744724
  • Wu VM, Schulte J, Hirschi A, Tepass U, Beitel GJ. Sinuous is a Drosophila claudin required for septate junction organization and epithelial tube size control. J Cell Biol. 2004;164:313-23. doi:10.1083/jcb.200309134. PMID:14734539
  • Behr M, Riedel D, Schuh R. The claudin-like megatrachea is essential in septate junctions for the epithelial barrier function in Drosophila. Dev Cell. 2003;5:611-20. doi:10.1016/S1534-5807(03)00275-2. PMID:14536062
  • Nelson KS, Furuse M, Beitel GJ. The Drosophila Claudin Kune-kune is required for septate junction organization and tracheal tube size control. Genetics. 2010;185:831-9. doi:10.1534/genetics.110.114959. PMID:20407131
  • Sun J, Wang X, Li C, Mao B. Xenopus Claudin-6 is required for embryonic pronephros morphogenesis and terminal differentiation. Biochem Biophys Res Commun. 2015;462:178-83. doi:10.1016/j.bbrc.2015.04.065. PMID:25979361
  • Baumholtz AI, Simard A, Nikolopoulou E, Oosenbrug M, Collins MM, Piontek A, Krause G, Piontek J, Greene NDE, Ryan AK. Claudins are essential for cell shape changes and convergent extension movements during neural tube closure. Dev Biol. 2017;428(1):25-38. doi:10.1016/j.ydbio.2017.05.013. PMID:28545845
  • Andrew DJ, Ewald AJ. Morphogenesis of epithelial tubes: Insights into tube formation, elongation, and elaboration. Dev Biol. 2010;341:34-55. doi:10.1016/j.ydbio.2009.09.024. PMID:19778532
  • Sawyer JM, Harrell JR, Shemer G, Sullivan-Brown J, Roh-Johnson M, Goldstein B. Apical constriction: a cell shape change that can drive morphogenesis. Dev Biol. 2010;341:5-19. doi:10.1016/j.ydbio.2009.09.009. PMID:19751720
  • Nikolopoulou E, Galea GL, Rolo A, Greene ND, Copp AJ. Neural tube closure: cellular, molecular and biomechanical mechanisms. Development. 2017;144:552-66. doi:10.1242/dev.145904. PMID:28196803
  • Maruyama R, Andrew DJ. Drosophila as a model for epithelial tube formation. Dev Dyn. 2012;241:119-35. doi:10.1002/dvdy.22775. PMID:22083894
  • Sigurbjornsdottir S, Mathew R, Leptin M. Molecular mechanisms of de novo lumen formation. Nat Rev Mol Cell Biol. 2014;15:665-76. doi:10.1038/nrm3871. PMID:25186133
  • Lowery LA, Sive H. Strategies of vertebrate neurulation and a re-evaluation of teleost neural tube formation. Mech Dev. 2004;121:1189-97. doi:10.1016/j.mod.2004.04.022. PMID:15327780
  • Sausedo RA, Smith JL, Schoenwolf GC. Role of nonrandomly oriented cell division in shaping and bending of the neural plate. J Comp Neurol. 1997;381:473-88. doi:10.1002/(SICI)1096-9861(19970519)381:4%3c473::AID-CNE7%3e3.0.CO;2-. PMID:9136804
  • Tang N, Marshall WF, McMahon M, Metzger RJ, Martin GR. Control of mitotic spindle angle by the RAS-regulated ERK1/2 pathway determines lung tube shape. Science. 2011;333:342-5. doi:10.1126/science.1204831. PMID:21764747
  • Schoenwolf GC, Alvarez IS. Roles of neuroepithelial cell rearrangement and division in shaping of the avian neural plate. Development. 1989;106:427-39. PMID:2598817
  • Davidson LA, Keller RE. Neural tube closure in Xenopus laevis involves medial migration, directed protrusive activity, cell intercalation and convergent extension. Development. 1999;126:4547-56. PMID:10498689
  • Goto T, Keller R. The planar cell polarity gene strabismus regulates convergence and extension and neural fold closure in Xenopus. Dev Biol. 2002;247:165-81. doi:10.1006/dbio.2002.0673. PMID:12074560
  • Wallingford JB, Harland RM. Neural tube closure requires Dishevelled-dependent convergent extension of the midline. Development. 2002;129:5815-25. doi:10.1242/dev.00123. PMID:12421719
  • Greene ND, Gerrelli D, Van Straaten HW, Copp AJ. Abnormalities of floor plate, notochord and somite differentiation in the loop-tail (Lp) mouse: a model of severe neural tube defects. Mech Dev. 1998;73:59-72. doi:10.1016/S0925-4773(98)00029-X. PMID:9545534
  • Saburi S, Hester I, Fischer E, Pontoglio M, Eremina V, Gessler M, Quaggin SE, Harrison R, Mount R, McNeill H. Loss of Fat4 disrupts PCP signaling and oriented cell division and leads to cystic kidney disease. Nat Genet. 2008;40:1010-5. doi:10.1038/ng.179. PMID:18604206
  • Yates LL, Papakrivopoulou J, Long DA, Goggolidou P, Connolly JO, Woolf AS, Dean CH. The planar cell polarity gene Vangl2 is required for mammalian kidney-branching morphogenesis and glomerular maturation. Hum Mol Genet. 2010;19:4663-76. doi:10.1093/hmg/ddq397. PMID:20843830
  • Moriwaki K, Tsukita S, Furuse M. Tight junctions containing claudin 4 and 6 are essential for blastocyst formation in preimplantation mouse embryos. Dev Biol. 2007;312:509-22. doi:10.1016/j.ydbio.2007.09.049. PMID:17980358
  • Luschnig S, Batz T, Armbruster K, Krasnow MA. serpentine and vermiform encode matrix proteins with chitin binding and deacetylation domains that limit tracheal tube length in Drosophila. Curr Biol. 2006;16:186-94. doi:10.1016/j.cub.2005.11.072. PMID:16431371
  • Bagnat M, Navis A, Herbstreith S, Brand-Arzamendi K, Curado S, Gabriel S, Mostov K, Huisken J, Stainier DY. Cse1l is a negative regulator of CFTR-dependent fluid secretion. Curr Biol. 2010;20:1840-5. doi:10.1016/j.cub.2010.09.012. PMID:20933420
  • Datta A, Bryant DM, Mostov KE. Molecular regulation of lumen morphogenesis. Curr Biol. 2011;21:R126-36. doi:10.1016/j.cub.2010.12.003. PMID:21300279
  • Filas BA, Oltean A, Beebe DC, Okamoto RJ, Bayly PV, Taber LA. A potential role for differential contractility in early brain development and evolution. Biomech Model Mechanobiol. 2012;11:1251-62. doi:10.1007/s10237-012-0389-4. PMID:22466353
  • Filas BA, Oltean A, Majidi S, Bayly PV, Beebe DC, Taber LA. Regional differences in actomyosin contraction shape the primary vesicles in the embryonic chicken brain. Phys Biol. 2012;9:066007. doi:10.1088/1478-3975/9/6/066007. PMID:23160445
  • Savin T, Kurpios NA, Shyer AE, Florescu P, Liang H, Mahadevan L, Tabin CJ. On the growth and form of the gut. Nature. 2011;476:57-62. doi:10.1038/nature10277. PMID:21814276
  • Shi Y, Yao J, Xu G, Taber LA. Bending of the looping heart: differential growth revisited. J Biomech Eng. 2014;136; pp.081002.1-081002.15; doi:10.1115/1.4026645
  • Ochoa-Espinosa A, Affolter M. Branching morphogenesis: from cells to organs and back. Cold Spring Harb Perspect Biol. 2012;4: 1-14. doi:10.1101/cshperspect.a008243
  • Affolter M, Zeller R, Caussinus E. Tissue remodelling through branching morphogenesis. Nat Rev Mol Cell Biol. 2009;10:831-42. doi:10.1038/nrm2797. PMID:19888266
  • Martin AC, Goldstein B. Apical constriction: themes and variations on a cellular mechanism driving morphogenesis. Development. 2014;141:1987-98. doi:10.1242/dev.102228. PMID:24803648
  • Taber LA. Morphomechanics: transforming tubes into organs. Curr Opin Genet Dev. 2014;27:7-13. doi:10.1016/j.gde.2014.03.004. PMID:24791687
  • Linask KK, Vanauker M. A role for the cytoskeleton in heart looping. Sci World J. 2007;7:280-98. doi:10.1100/tsw.2007.87
  • Martin AC. Pulsation and stabilization: contractile forces that underlie morphogenesis. Dev Biol. 2010;341:114-25. doi:10.1016/j.ydbio.2009.10.031. PMID:19874815
  • Zhang J, Piontek J, Wolburg H, Piehl C, Liss M, Otten C, Christ A, Willnow TE, Blasig IE, Abdelilah-Seyfried S. Establishment of a neuroepithelial barrier by Claudin5a is essential for zebrafish brain ventricular lumen expansion. Proc Natl Acad Sci U S A. 2010;107:1425-30. doi:10.1073/pnas.0911996107. PMID:20080584
  • Schneeberger EE, Lynch RD. The tight junction: a multifunctional complex. Am J Physiol Cell Physiol. 2004;286:C1213-28. doi:10.1152/ajpcell.00558.2003. PMID:15151915
  • Furuse M, Sasaki H, Fujimoto K, Tsukita S. A single gene product, claudin-1 or −2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J Cell Biol. 1998;143:391-401. doi:10.1083/jcb.143.2.391. PMID:9786950
  • Piontek A, Rossa J, Protze J, Wolburg H, Hempel C, Gunzel D, Krause G, Piontek J. Polar and charged extracellular residues conserved among barrier-forming claudins contribute to tight junction strand formation. Ann N Y Acad Sci. 2017;1397:143-56. doi:10.1111/nyas.13341. PMID:28415153
  • Lal-Nag M, Morin PJ. The claudins. Genome Biol. 2009;10:235. doi:10.1186/gb-2009-10-8-235. PMID:19706201
  • Piontek J, Winkler L, Wolburg H, Muller SL, Zuleger N, Piehl C, Wiesner B, Krause G, Blasig IE. Formation of tight junction: determinants of homophilic interaction between classic claudins. FASEB J 2008;22:146-58. doi:10.1096/fj.07-8319com. PMID:17761522
  • Suzuki H, Nishizawa T, Tani K, Yamazaki Y, Tamura A, Ishitani R, Dohmae N, Tsukita S, Nureki O, Fujiyoshi Y. Crystal structure of a claudin provides insight into the architecture of tight junctions. Science. 2014;344:304-7. doi:10.1126/science.1248571. PMID:24744376
  • Milatz S, Piontek J, Schulzke JD, Blasig IE, Fromm M, Gunzel D. Probing the cis-arrangement of prototype tight junction proteins claudin-1 and claudin-3. Biochem J. 2015;468:449-58. doi:10.1042/BJ20150148. PMID:25849148
  • Rossa J, Ploeger C, Vorreiter F, Saleh T, Protze J, Gunzel D, Wolburg H, Krause G, Piontek J. Claudin-3 and claudin-5 protein folding and assembly into the tight junction are controlled by non-conserved residues in the transmembrane 3 (TM3) and extracellular loop 2 (ECL2) segments. J Biol Chem. 2014;289:7641-53. doi:10.1074/jbc.M113.531012. PMID:24478310
  • Wen H, Watry DD, Marcondes MC, Fox HS. Selective decrease in paracellular conductance of tight junctions: role of the first extracellular domain of claudin-5. Mol Cell Biol. 2004;24:8408-17. doi:10.1128/MCB.24.19.8408-8417.2004. PMID:15367662
  • Colegio OR, Van Itallie C, Rahner C, Anderson JM. Claudin extracellular domains determine paracellular charge selectivity and resistance but not tight junction fibril architecture. Am J Physiol Cell Physiol. 2003;284:C1346-54. doi:10.1152/ajpcell.00547.2002. PMID:12700140
  • Li J, Angelow S, Linge A, Zhuo M, Yu AS. Claudin-2 pore function requires an intramolecular disulfide bond between two conserved extracellular cysteines. Am J Physiol Cell Physiol. 2013;305:C190-6. doi:10.1152/ajpcell.00074.2013. PMID:23677799
  • Li J, Zhuo M, Pei L, Yu AS. Conserved aromatic residue confers cation selectivity in claudin-2 and claudin-10b. J Biol Chem. 2013;288:22790-7. doi:10.1074/jbc.M113.484238. PMID:23760508
  • Van Itallie CM, Rogan S, Yu A, Vidal LS, Holmes J, Anderson JM. Two splice variants of claudin-10 in the kidney create paracellular pores with different ion selectivities. Am J Physiol Renal Physiol. 2006;291:F1288-99. doi:10.1152/ajprenal.00138.2006. PMID:16804102
  • Hou J, Paul DL, Goodenough DA. Paracellin-1 and the modulation of ion selectivity of tight junctions. J Cell Sci. 2005;118:5109-18. doi:10.1242/jcs.02631. PMID:16234325
  • Colegio OR, Van Itallie CM, McCrea HJ, Rahner C, Anderson JM. Claudins create charge-selective channels in the paracellular pathway between epithelial cells. Am J Physiol Cell Physiol. 2002;283:C142-7. doi:10.1152/ajpcell.00038.2002. PMID:12055082
  • Kausalya PJ, Amasheh S, Gunzel D, Wurps H, Muller D, Fromm M, Hunziker W. Disease-associated mutations affect intracellular traffic and paracellular Mg2+ transport function of Claudin-16. J Clin Invest. 2006;116:878-91. doi:10.1172/JCI26323. PMID:16528408
  • Krug SM, Gunzel D, Conrad MP, Rosenthal R, Fromm A, Amasheh S, Schulzke JD, Fromm M. Claudin-17 forms tight junction channels with distinct anion selectivity. Cell Mol Life Sci. 2012;69:2765-78. doi:10.1007/s00018-012-0949-x. PMID:22402829
  • Gonzalez-Mariscal L, Tapia R, Chamorro D. Crosstalk of tight junction components with signaling pathways. Biochim Biophys Acta. 2008;1778:729-56. doi:10.1016/j.bbamem.2007.08.018. PMID:17950242
  • Van Itallie CM, Gambling TM, Carson JL, Anderson JM. Palmitoylation of claudins is required for efficient tight-junction localization. J Cell Sci. 2005;118:1427-36. doi:10.1242/jcs.01735. PMID:15769849
  • Van Itallie CM, Tietgens AJ, LoGrande K, Aponte A, Gucek M, Anderson JM. Phosphorylation of claudin-2 on serine 208 promotes membrane retention and reduces trafficking to lysosomes. J Cell Sci. 2012;125:4902-12. doi:10.1242/jcs.111237. PMID:22825868
  • Van Itallie CM, Colegio OR, Anderson JM. The cytoplasmic tails of claudins can influence tight junction barrier properties through effects on protein stability. J Membr Biol. 2004;199:29-38. doi:10.1007/s00232-004-0673-z. PMID:15366421
  • Fujibe M, Chiba H, Kojima T, Soma T, Wada T, Yamashita T, Sawada N. Thr203 of claudin-1, a putative phosphorylation site for MAP kinase, is required to promote the barrier function of tight junctions. Exp Cell Res. 2004;295:36-47. doi:10.1016/j.yexcr.2003.12.014. PMID:15051488
  • Soma T, Chiba H, Kato-Mori Y, Wada T, Yamashita T, Kojima T, Sawada N. Thr(207) of claudin-5 is involved in size-selective loosening of the endothelial barrier by cyclic AMP. Exp Cell Res. 2004;300:202-12. doi:10.1016/j.yexcr.2004.07.012. PMID:15383327
  • Fredriksson K, Van Itallie CM, Aponte A, Gucek M, Tietgens AJ, Anderson JM. Proteomic analysis of proteins surrounding occludin and claudin-4 reveals their proximity to signaling and trafficking networks. PLoS One. 2015;10:e0117074. doi:10.1371/journal.pone.0117074. PMID:25789658
  • Itoh M, Furuse M, Morita K, Kubota K, Saitou M, Tsukita S. Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J Cell Biol. 1999;147:1351-63. doi:10.1083/jcb.147.6.1351. PMID:10601346
  • Hamazaki Y, Itoh M, Sasaki H, Furuse M, Tsukita S. Multi-PDZ domain protein 1 (MUPP1) is concentrated at tight junctions through its possible interaction with claudin-1 and junctional adhesion molecule. J Biol Chem. 2002;277:455-61. doi:10.1074/jbc.M109005200. PMID:11689568
  • Collins MM, Baumholtz AI, Ryan AK. Claudin family members exhibit unique temporal and spatial expression boundaries in the chick embryo. Tissue Barriers. 2013;1:e24517. doi:10.4161/tisb.24517. PMID:24665397
  • Abuazza G, Becker A, Williams SS, Chakravarty S, Truong HT, Lin F, Baum M. Claudins 6, 9, and 13 are developmentally expressed renal tight junction proteins. Am J Physiol Renal Physiol. 2006;291:F1132-41. doi:10.1152/ajprenal.00063.2006. PMID:16774906
  • Khairallah H, El Andalousi J, Simard A, Haddad N, Chen YH, Hou J, Ryan AK, Gupta IR. Claudin-7, −16, and −19 during mouse kidney development. Tissue Barriers. 2014;2:e964547. doi:10.4161/21688362.2014.964547. PMID:25610756
  • Evans MJ, von Hahn T, Tscherne DM, Syder AJ, Panis M, Wolk B, Hatziioannou T, McKeating JA, Bieniasz PD, Rice CM. Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature. 2007;446:801-5. doi:10.1038/nature05654. PMID:17325668
  • Katahira J, Inoue N, Horiguchi Y, Matsuda M, Sugimoto N. Molecular cloning and functional characterization of the receptor for Clostridium perfringens enterotoxin. J Cell Biol. 1997;136:1239-47. doi:10.1083/jcb.136.6.1239. PMID:9087440
  • Katahira J, Sugiyama H, Inoue N, Horiguchi Y, Matsuda M, Sugimoto N. Clostridium perfringens enterotoxin utilizes two structurally related membrane proteins as functional receptors in vivo. J Biol Chem. 1997;272:26652-8. doi:10.1074/jbc.272.42.26652. PMID:9334247
  • Shrestha A, McClane BA. Human claudin-8 and −14 are receptors capable of conveying the cytotoxic effects of Clostridium perfringens enterotoxin. MBio. 2013;4:1-11. doi:10.1128/mBio.00594-12
  • Winkler L, Gehring C, Wenzel A, Muller SL, Piehl C, Krause G, Blasig IE, Piontek J. Molecular determinants of the interaction between Clostridium perfringens enterotoxin fragments and claudin-3. J Biol Chem. 2009;284:18863-72. doi:10.1074/jbc.M109.008623. PMID:19429681
  • Mitchell LA, Koval M. Specificity of interaction between clostridium perfringens enterotoxin and claudin-family tight junction proteins. Toxins (Basel). 2010;2:1595-611. doi:10.3390/toxins2071595. PMID:22069652
  • Mukendi C, Dean N, Lala R, Smith J, Bronner ME, Nikitina NV. Evolution of the vertebrate claudin gene family: insights from a basal vertebrate, the sea lamprey. Int J Dev Biol. 2016;60:39-51. doi:10.1387/ijdb.150364nn. PMID:27002805
  • Simske JS. Claudins reign: The claudin/EMP/PMP22/gamma channel protein family in C. elegans. Tissue Barriers. 2013;1:e25502. doi:10.4161/tisb.25502. PMID:24665403
  • Simske JS, Hardin J. Claudin family proteins in Caenorhabditis elegans. Methods Mol Biol. 2011;762:147-69. doi:10.1007/978-1-61779-185-7_11. PMID:21717355
  • Simske JS, Koppen M, Sims P, Hodgkin J, Yonkof A, Hardin J. The cell junction protein VAB-9 regulates adhesion and epidermal morphology in C. elegans. Nat Cell Biol. 2003;5:619-25. doi:10.1038/ncb1002. PMID:12819787
  • Baltzegar DA, Reading BJ, Brune ES, Borski RJ. Phylogenetic revision of the claudin gene family. Mar Genomics. 2013;11:17-26. doi:10.1016/j.margen.2013.05.001. PMID:23726886
  • Loh YH, Christoffels A, Brenner S, Hunziker W, Venkatesh B. Extensive expansion of the claudin gene family in the teleost fish, Fugu rubripes. Genome Res. 2004;14:1248-57. doi:10.1101/gr.2400004. PMID:15197168
  • Li G, Flodby P, Luo J, Kage H, Sipos A, Gao D, Ji Y, Beard LL, Marconett CN, DeMaio L, et al. Knockout mice reveal key roles for claudin 18 in alveolar barrier properties and fluid homeostasis. Am J Respir Cell Mol Biol. 2014;51:210-22. PMID:24588076
  • Matsumoto K, Imasato M, Yamazaki Y, Tanaka H, Watanabe M, Eguchi H, Nagano H, Hikita H, Tatsumi T, Takehara T, et al. Claudin 2 deficiency reduces bile flow and increases susceptibility to cholesterol gallstone disease in mice. Gastroenterology. 2014;147:1134-45 e10. doi:10.1053/j.gastro.2014.07.033. PMID:25068494
  • Wada M, Tamura A, Takahashi N, Tsukita S. Loss of claudins 2 and 15 from mice causes defects in paracellular Na+ flow and nutrient transport in gut and leads to death from malnutrition. Gastroenterology. 2013;144:369-80. doi:10.1053/j.gastro.2012.10.035. PMID:23089202
  • Hayashi D, Tamura A, Tanaka H, Yamazaki Y, Watanabe S, Suzuki K, Suzuki K, Sentani K, Yasui W, Rakugi H, et al. Deficiency of claudin-18 causes paracellular H+ leakage, up-regulation of interleukin-1beta, and atrophic gastritis in mice. Gastroenterology. 2012;142:292-304. doi:10.1053/j.gastro.2011.10.040. PMID:22079592
  • Ding L, Lu Z, Foreman O, Tatum R, Lu Q, Renegar R, Cao J, Chen YH. Inflammation and disruption of the mucosal architecture in claudin-7-deficient mice. Gastroenterology. 2012;142:305-15. doi:10.1053/j.gastro.2011.10.025. PMID:22044670
  • Tanaka H, Takechi M, Kiyonari H, Shioi G, Tamura A, Tsukita S. Intestinal deletion of Claudin-7 enhances paracellular organic solute flux and initiates colonic inflammation in mice. Gut. 2015;64:1529-38. doi:10.1136/gutjnl-2014-308419. PMID:25691495
  • Muto S, Hata M, Taniguchi J, Tsuruoka S, Moriwaki K, Saitou M, Furuse K, Sasaki H, Fujimura A, Imai M, et al. Claudin-2-deficient mice are defective in the leaky and cation-selective paracellular permeability properties of renal proximal tubules. Proc Natl Acad Sci U S A. 2010;107:8011-6. doi:10.1073/pnas.0912901107. PMID:20385797
  • Fujita H, Hamazaki Y, Noda Y, Oshima M, Minato N. Claudin-4 deficiency results in urothelial hyperplasia and lethal hydronephrosis. PloS One. 2012;7:e52272. doi:10.1371/journal.pone.0052272. PMID:23284964
  • Tatum R, Zhang Y, Salleng K, Lu Z, Lin JJ, Lu Q, Jeansonne BG, Ding L, Chen YH. Renal salt wasting and chronic dehydration in claudin-7-deficient mice. Am J Physiol Renal Physiol. 2010;298:F24-34. doi:10.1152/ajprenal.00450.2009. PMID:19759267
  • Gong Y, Wang J, Yang J, Gonzales E, Perez R, Hou J. KLHL3 regulates paracellular chloride transport in the kidney by ubiquitination of claudin-8. Proc Natl Acad Sci U S A. 2015;112:4340-5. doi:10.1073/pnas.1421441112. PMID:25831548
  • Breiderhoff T, Himmerkus N, Stuiver M, Mutig K, Will C, Meij IC, Bachmann S, Bleich M, Willnow TE, Müller D. Deletion of claudin-10 (Cldn10) in the thick ascending limb impairs paracellular sodium permeability and leads to hypermagnesemia and nephrocalcinosis. Proc Natl Acad Sci U S A. 2012;109:14241-6. doi:10.1073/pnas.1203834109. PMID:22891322
  • Hou J, Renigunta A, Gomes AS, Hou M, Paul DL, Waldegger S, Goodenough DA. Claudin-16 and claudin-19 interaction is required for their assembly into tight junctions and for renal reabsorption of magnesium. Proc Natl Acad Sci U S A. 2009;106:15350-5. doi:10.1073/pnas.0907724106. PMID:19706394
  • Hou J, Shan Q, Wang T, Gomes AS, Yan Q, Paul DL, Bleich M, Goodenough DA. Transgenic RNAi depletion of claudin-16 and the renal handling of magnesium. J Biol Chem. 2007;282:17114-22. doi:10.1074/jbc.M700632200. PMID:17442678
  • Cheung ID, Bagnat M, Ma TP, Datta A, Evason K, Moore JC, Lawson ND, Mostov KE, Moens CB, Stainier DY. Regulation of intrahepatic biliary duct morphogenesis by Claudin 15-like b. Dev Biol. 2012;361:68-78. doi:10.1016/j.ydbio.2011.10.004. PMID:22020048
  • Wessely O, Tran U. Xenopus pronephros development–past, present, and future. Pediatr Nephrol. 2011;26:1545-51. doi:10.1007/s00467-011-1881-2. PMID:21499947
  • Furuse M, Hata M, Furuse K, Yoshida Y, Haratake A, Sugitani Y, Noda T, Kubo A, Tsukita S. Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol. 2002;156:1099-111. doi:10.1083/jcb.200110122. PMID:11889141
  • Gow A, Southwood CM, Li JS, Pariali M, Riordan GP, Brodie SE, Danias J, Bronstein JM, Kachar B, Lazzarini RA. CNS myelin and sertoli cell tight junction strands are absent in Osp/claudin-11 null mice. Cell. 1999;99:649-59. doi:10.1016/S0092-8674(00)81553-6. PMID:10612400
  • Ben-Yosef T, Belyantseva IA, Saunders TL, Hughes ED, Kawamoto K, Van Itallie CM, Beyer LA, Halsey K, Gardner DJ, Wilcox ER, et al. Claudin 14 knockout mice, a model for autosomal recessive deafness DFNB29, are deaf due to cochlear hair cell degeneration. Hum Mol Genet. 2003;12:2049-61. doi:10.1093/hmg/ddg210. PMID:12913076
  • Tamura A, Kitano Y, Hata M, Katsuno T, Moriwaki K, Sasaki H, Hayashi H, Suzuki Y, Noda T, Furuse M, et al. Megaintestine in claudin-15-deficient mice. Gastroenterology. 2008;134:523-34. doi:10.1053/j.gastro.2007.11.040. PMID:18242218
  • Miyamoto T, Morita K, Takemoto D, Takeuchi K, Kitano Y, Miyakawa T, Nakayama K, Okamura Y, Sasaki H, Miyachi Y, et al. Tight junctions in Schwann cells of peripheral myelinated axons: a lesson from claudin-19-deficient mice. J Cell Biol. 2005;169:527-38. doi:10.1083/jcb.200501154. PMID:15883201
  • Kage H, Flodby P, Gao D, Kim YH, Marconett CN, DeMaio L, Kim KJ, Crandall ED, Borok Z. Claudin 4 knockout mice: normal physiological phenotype with increased susceptibility to lung injury. Am J Physiol Lung Cell Mol Physiol. 2014;307:L524-36. doi:10.1152/ajplung.00077.2014. PMID:25106430
  • Anderson WJ, Zhou Q, Alcalde V, Kaneko OF, Blank LJ, Sherwood RI, Guseh JS, Rajagopal J, Melton DA. Genetic targeting of the endoderm with claudin-6CreER. Dev Dyn. 2008;237:504-12. doi:10.1002/dvdy.21437. PMID:18213590
  • Gray RS, Roszko I, Solnica-Krezel L. Planar cell polarity: coordinating morphogenetic cell behaviors with embryonic polarity. Dev Cell. 2011;21:120-33. doi:10.1016/j.devcel.2011.06.011. PMID:21763613
  • Wang J, Hamblet NS, Mark S, Dickinson ME, Brinkman BC, Segil N, Fraser SE, Chen P, Wallingford JB, Wynshaw-Boris A. Dishevelled genes mediate a conserved mammalian PCP pathway to regulate convergent extension during neurulation. Development. 2006;133:1767-78. doi:10.1242/dev.02347. PMID:16571627
  • Ciruna B, Jenny A, Lee D, Mlodzik M, Schier AF. Planar cell polarity signalling couples cell division and morphogenesis during neurulation. Nature. 2006;439:220-4. doi:10.1038/nature04375. PMID:16407953
  • Ybot-Gonzalez P, Savery D, Gerrelli D, Signore M, Mitchell CE, Faux CH, Greene ND, Copp AJ. Convergent extension, planar-cell-polarity signalling and initiation of mouse neural tube closure. Development. 2007;134:789-99. doi:10.1242/dev.000380. PMID:17229766
  • Sonoda N, Furuse M, Sasaki H, Yonemura S, Katahira J, Horiguchi Y, Tsukita S. Clostridium perfringens enterotoxin fragment removes specific claudins from tight junction strands: Evidence for direct involvement of claudins in tight junction barrier. J Cell Biol. 1999;147:195-204. doi:10.1083/jcb.147.1.195. PMID:10508866
  • Che J, Yang Y, Xiao J, Zhao P, Yan B, Dong S, Cao B. Decreased expression of claudin-3 is associated with a poor prognosis and EMT in completely resected squamous cell lung carcinoma. Tumour Biol. 2015;36:6559-68. doi:10.1007/s13277-015-3350-1. PMID:25820701
  • Bhat AA, Pope JL, Smith JJ, Ahmad R, Chen X, Washington MK, Beauchamp RD, Singh AB, Dhawan P. Claudin-7 expression induces mesenchymal to epithelial transformation (MET) to inhibit colon tumorigenesis. Oncogene. 2015;34:4570-80. doi:10.1038/onc.2014.385. PMID:25500541
  • Taube JH, Herschkowitz JI, Komurov K, Zhou AY, Gupta S, Yang J, Hartwell K, Onder TT, Gupta PB, Evans KW. Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci U S A. 2010;107:15449-54. doi:10.1073/pnas.1004900107. PMID:20713713
  • Godde NJ, Galea RC, Elsum IA, Humbert PO. Cell polarity in motion: redefining mammary tissue organization through EMT and cell polarity transitions. J Mammary Gland Biol Neoplasia. 2010;15:149-68. doi:10.1007/s10911-010-9180-2. PMID:20461450
  • Ikenouchi J, Matsuda M, Furuse M, Tsukita S. Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci. 2003;116:1959-67. doi:10.1242/jcs.00389. PMID:12668723
  • Smith JL, Schoenwolf GC. Cell cycle and neuroepithelial cell shape during bending of the chick neural plate. Anat Rec. 1987;218:196-206. doi:10.1002/ar.1092180215. PMID:3619087
  • McShane SG, Mole MA, Savery D, Greene ND, Tam PP, Copp AJ. Cellular basis of neuroepithelial bending during mouse spinal neural tube closure. Dev Biol. 2015;404:113-24. doi:10.1016/j.ydbio.2015.06.003. PMID:26079577
  • Smith JL, Schoenwolf GC, Quan J. Quantitative analyses of neuroepithelial cell shapes during bending of the mouse neural plate. J Comp Neurol. 1994;342:144-51. doi:10.1002/cne.903420113. PMID:8207124
  • Schoenwolf GC, Franks MV. Quantitative analyses of changes in cell shapes during bending of the avian neural plate. Dev Biol. 1984;105:257-72. doi:10.1016/0012-1606(84)90284-7. PMID:6479439
  • Kinoshita N, Sasai N, Misaki K, Yonemura S. Apical accumulation of Rho in the neural plate is important for neural plate cell shape change and neural tube formation. Mol Biol Cell. 2008;19:2289-99. doi:10.1091/mbc.E07-12-1286. PMID:18337466
  • Escuin S, Vernay B, Savery D, Gurniak CB, Witke W, Greene ND, Copp AJ. Rho-kinase-dependent actin turnover and actomyosin disassembly are necessary for mouse spinal neural tube closure. J Cell Sci. 2015;128:2468-81. doi:10.1242/jcs.164574. PMID:26040287
  • Itoh K, Ossipova O, Sokol SY. GEF-H1 functions in apical constriction and cell intercalations and is essential for vertebrate neural tube closure. J Cell Sci. 2014;127:2542-53. doi:10.1242/jcs.146811. PMID:24681784
  • Chung S, Andrew DJ. The formation of epithelial tubes. J Cell Sci. 2008;121:3501-4. doi:10.1242/jcs.037887. PMID:18946020
  • Siddiqui M, Sheikh H, Tran C, Bruce AE. The tight junction component Claudin E is required for zebrafish epiboly. Dev Dyn. 2010;239:715-22. doi:10.1002/dvdy.22172. PMID:20014098
  • Brizuela BJ, Wessely O, De Robertis EM. Overexpression of the Xenopus tight-junction protein claudin causes randomization of the left-right body axis. Dev Biol. 2001;230:217-29. doi:10.1006/dbio.2000.0116. PMID:11161574
  • Warga RM, Kimmel CB. Cell movements during epiboly and gastrulation in zebrafish. Development. 1990;108:569-80. PMID:2387236
  • Consortium. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature. 2004;432:695-716. doi:10.1038/nature03154. PMID:15592404
  • Chakraborty P, William Buaas F, Sharma M, Smith BE, Greenlee AR, Eacker SM, Braun RE. Androgen-dependent sertoli cell tight junction remodeling is mediated by multiple tight junction components. Mol Endocrinol. 2014;28:1055-72. doi:10.1210/me.2013-1134. PMID:24825397
  • Pyrgaki C, Liu A, Niswander L. Grainyhead-like 2 regulates neural tube closure and adhesion molecule expression during neural fold fusion. Dev Biol. 2011;353:38-49. doi:10.1016/j.ydbio.2011.02.027. PMID:21377456
  • Rifat Y, Parekh V, Wilanowski T, Hislop NR, Auden A, Ting SB, Cunningham JM, Jane SM, et al. Regional neural tube closure defined by the Grainy head-like transcription factors. Dev Biol. 2010;345:237-45. doi:10.1016/j.ydbio.2010.07.017. PMID:20654612
  • Brouns MR, De Castro SC, Terwindt-Rouwenhorst EA, Massa V, Hekking JW, Hirst CS, Savery D, Munts C, Partridge D, Lamers W, et al. Over-expression of Grhl2 causes spina bifida in the Axial defects mutant mouse. Hum Mol Genet. 2011;20:1536-46. doi:10.1093/hmg/ddr031. PMID:21262862
  • Aue A, Hinze C, Walentin K, Ruffert J, Yurtdas Y, Werth M, Chen W, Rabien A, Kilic E, Schulzke JD, et al. A Grainyhead-Like 2/Ovo-Like 2 Pathway Regulates Renal Epithelial Barrier Function and Lumen Expansion. J Am Soc Nephrol. 2015;26:2704-15. doi:10.1681/ASN.2014080759. PMID:25788534
  • Kidder GM. Trophectoderm development and function: the roles of Na+/K(+)-ATPase subunit isoforms. Can J Physiol Pharmacol. 2002;80:110-5. doi:10.1139/y02-017. PMID:11934253
  • Lowery LA, Sive H. Initial formation of zebrafish brain ventricles occurs independently of circulation and requires the nagie oko and snakehead/atp1a1a.1 gene products. Development. 2005;132:2057-67. doi:10.1242/dev.01791. PMID:15788456
  • Bagnat M, Cheung ID, Mostov KE, Stainier DY. Genetic control of single lumen formation in the zebrafish gut. Nat Cell Biol. 2007;9:954-60. doi:10.1038/ncb1621. PMID:17632505

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.