2,447
Views
4
CrossRef citations to date
0
Altmetric
Research Paper

Short-term tissue permeability actions of dextran sulfate sodium studied in a colon organ culture system

, , , , ORCID Icon, & show all
Article: 1728165 | Received 24 Sep 2019, Accepted 06 Feb 2020, Published online: 20 Feb 2020

References

  • Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448:1–15. doi:10.1038/nature06005.
  • Baumgart DC, Carding SR. Inflammatory bowel disease: cause and immunobiology. Lancet. 2007;369:1627–1640. doi:10.1016/S0140-6736(07)60750-8.
  • Ananthakrishnan AN, Bernstein CN, Iliopoulos D, Macpherson A, Neurath MF, Ali RAR, Vavricka SR, Fiocchi C. Environmental triggers in IBD: a review of progress and evidence. Nat Rev Gastroenterol Hepatol. 2018;15:39–49. doi:10.1038/nrgastro.2017.136.
  • Cohen RD, Yu AP, Wu EQ, Xie J, Mulani PM, Chao J. Systematic review: the costs of ulcerative colitis in Western countries. Aliment Pharmacol Ther. 2010;31:693–707. doi:10.1111/j.1365-2036.2010.04234.x.
  • Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology. 1990;98:694–702. doi:10.1016/0016-5085(90)90290-H.
  • Eichele DD, Kharbanda KK. Dextran sodium sulfate colitis murine model: an indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World J Gastroenterol. 2017;23:6016–6029. doi:10.3748/wjg.v23.i33.6016.
  • Chassaing B, Aitken JD, Malleshappa M, Vijay‐Kumar M. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr Protoc Immunol. 2014;104. Unit. doi:10.1002/0471142735.2014.104.issue-1.
  • Kiesler P, Fuss IJ, Strober W. Experimental models of inflammatory bowel diseases. Cell Mol Gastroenterol Hepatol. 2015;1:154–170.
  • Randhawa PK, Singh K, Singh N, Jaggi AS. A review on chemical-induced inflammatory bowel disease models in rodents. Korean J Physiol Pharmacol. 2014;18:279–288. doi:10.4196/kjpp.2014.18.4.279.
  • Gkouskou KK, Deligianni C, Tsatsanis C, Eliopoulos AG. The gut microbiota in mouse models of inflammatory bowel disease. Front Cell Infect Microbiol. 2014;4:28. doi:10.3389/fcimb.2014.00028.
  • Bak A, Ashford M, Brayden DJ. Local delivery of macromolecules to treat diseases associated with the colon. Adv Drug Deliv Rev. 2018;136–137:2–27. doi:10.1016/j.addr.2018.10.009.
  • Danielsen ET, Danielsen EM. Glycol chitosan: A stabilizer of lipid rafts in the intestinal brush border. Biochim Biophys Acta. 2017;1859:360–367. doi:10.1016/j.bbamem.2016.12.017.
  • Danielsen EM, Hansen GH. Probing the action of permeation enhancers sodium cholate and N-dodecyl-beta-D-maltoside in a porcine jejunal mucosal explant system. Pharmaceutics. 2018;10:172.
  • Danielsen EM, Hansen GH. Probing paracellular -versus transcellular tissue barrier permeability using a gut mucosal explant culture system. Tissue Barriers. 2019;7:1601955. doi:10.1080/21688370.2019.1601955.
  • Danielsen EM, Hansen GH. Impact of cell-penetrating peptides (CPPs) melittin and Hiv-1 Tat on the enterocyte brush border using a mucosal explant system. Biochim Biophys Acta. 2018;1860:1589–1599. doi:10.1016/j.bbamem.2018.05.015.
  • Danielsen EM, Hansen GH. Intestinal surfactant permeation enhancers and their interaction with enterocyte cell membranes in a mucosal explant system. Tissue Barriers. 2017;5:e1361900. doi:10.1080/21688370.2017.1361900.
  • Prusov AN, Fais D, Polyakov VY. Formation of compact globular particles in interphase nuclei from rat liver under the effect of polyanions. Biochem Biophys Res Commun. 1993;193:591–598. doi:10.1006/bbrc.1993.1665.
  • Nakashima A, Mori K, Sasaki S. Interaction between polyanions and cell nuclei: mechanism of gelatination of nuclei. Biochem Biophys Res Commun. 1996;228:846–851. doi:10.1006/bbrc.1996.1742.
  • Browning TH, Trier JS. Organ culture of mucosal biopsies of human small intestine. J Clin Invest. 1969;48:1423–1432. doi:10.1172/JCI106108.
  • Danielsen EM, Sjostrom H, Noren O. Biosynthesis of intestinal microvillar proteins. Characterization of intestinal explants in organ culture and evidence for the existence of pro-forms of the microvillar enzymes. Biochem J. 1982;202:647–654.
  • Lorenzen US, Hansen GH, Danielsen EM. Organ culture as a model system for studies on enterotoxin interactions with the intestinal epithelium. Methods Mol Biol. 2016;1396:159–166.
  • Wittekind D. Traditional staining for routine diagnostic pathology including the role of tannic acid 1. Value and limitations of the hematoxylin-eosin stain. Biotech Histochem. 2003;78:261–270. doi:10.1080/10520290310001633725.
  • Ni J, Chen SF, Hollander D. Effects of dextran sulphate sodium on intestinal epithelial cells and intestinal lymphocytes. Gut. 1996;39:234–241. doi:10.1136/gut.39.2.234.
  • Bolte S, Talbot C, Boutte Y, Catrice O, Read ND, Satiat-Jeunemaitre B. FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. J Microsc. 2004;214:159–173. doi:10.1111/j.0022-2720.2004.01348.x.
  • Hansen GH, Rasmussen K, Niels-Christiansen -L-L, Danielsen EM. Endocytic trafficking from the small intestinal brush border probed with FM dye. Am J Physiol Gastrointest Liver Physiol. 2009;297:G708–G715. doi:10.1152/ajpgi.00192.2009.
  • Neutra MR, Mantis NJ, Kraehenbuhl JP. Collaboration of epithelial cells with organized mucosal lymphoid tissues. Nat Immunol. 2001;2:1004–1009. doi:10.1038/ni1101-1004.
  • Biddison WE, Shaw S. CD4 expression and function in HLA class II-specific T cells. Immunol Rev. 1989;109:5–15. doi:10.1111/j.1600-065X.1989.tb00017.x.
  • McDougal JS. Function of the CD4 molecule in normal immune responses. Curr Opin Immunol. 1988;1:88–91. doi:10.1016/0952-7915(88)90057-X.
  • Koberle M, Kaesler S, Kempf W, Wölbing F, Biedermann T. Tetraspanins in mast cells. Front Immunol. 2012;3:106. doi:10.3389/fimmu.2012.00106.
  • Kabelitz D. Expression and function of Toll-like receptors in T lymphocytes. Curr Opin Immunol. 2007;19:39–45. doi:10.1016/j.coi.2006.11.007.
  • Honko AN, Mizel SB. Effects of flagellin on innate and adaptive immunity. Immunol Res. 2005;33:83–101. doi:10.1385/IR:33:1.
  • Fuchs E, Weber K. Intermediate filaments: structure, dynamics, function, and disease. Annu Rev Biochem. 1994;63:345–382. doi:10.1146/annurev.bi.63.070194.002021.
  • Tarbit E, Singh I, Peart JN, Rose’Meyer RB. Biomarkers for the identification of cardiac fibroblast and myofibroblast cells. Heart Fail Rev. 2019;24:1–15. doi:10.1007/s10741-018-9720-1.
  • Schonk DM, Kuijpers HJ, van DE, van Dalen CH, Geurts van Kessel AHM, Verheijen R, Ramaekers FCS. Assignment of the gene(s) involved in the expression of the proliferation-related Ki-67 antigen to human chromosome 10. Hum Genet. 1989;83:297–299. doi:10.1007/BF00285178.
  • Bruno S, Darzynkiewicz Z. Cell cycle dependent expression and stability of the nuclear protein detected by Ki-67 antibody in HL-60 cells. Cell Prolif. 1992;25:31–40. doi:10.1111/j.1365-2184.1992.tb01435.x.
  • Poritz LS, Garver KI, Green C, Fitzpatrick L, Ruggiero F, Koltun WA. Loss of the tight junction protein ZO-1 in dextran sulfate sodium induced colitis. J Surg Res. 2007;140:12–19. doi:10.1016/j.jss.2006.07.050.
  • Yuan B, Zhou S, Lu Y, Liu J, Jin X, Wan H, Wang F. Changes in the expression and distribution of claudins, increased epithelial apoptosis, and a mannan-binding lectin-associated immune response lead to barrier dysfunction in dextran sodium sulfate-induced rat colitis. Gut Liver. 2015;9:734–740. doi:10.5009/gnl14155.
  • Tsaprouni LG, Ito K, Powell JJ, Adcock IM, Punchard N. Differential patterns of histone acetylation in inflammatory bowel diseases. J Inflamm (Lond). 2011;8:1. doi:10.1186/1476-9255-8-1.