565
Views
0
CrossRef citations to date
0
Altmetric
Review

Mechanisms and modeling of wound repair in the intestinal epithelium

, , ORCID Icon & ORCID Icon
Article: 2087454 | Received 24 Feb 2022, Accepted 03 Jun 2022, Published online: 11 Jun 2022

References

  • Gu J, Han B, Wang J. COVID-19: Gastrointestinal manifestations and potential fecal-oral transmission. Gastroenterology. 2020;158(6):164–178. doi:10.1053/j.gastro.2020.02.054.
  • Jacobi SK,Moeser AJ, Blikslager AT, Rhoads JM, Corl BA, Harrell RJ, Odle J. Acute effects of rotavirus and malnutrition on intestinal barrier function in neonatal piglets. World J Gastroenterol. 2013;19(31):5094–5102. doi:10.3748/wjg.v19.i31.5094.
  • Crawford SE,Ramani S, Tate JE, Parashar UD, Svensson L, Hagbom M, Franco MA. Rotavirus infection. Nat Rev Dis Primers. 2017;3:17083. doi:10.1038/nrdp.2017.83.
  • Jung K, Saif LJ, Wang Q. Porcine epidemic diarrhea virus (PEDV): an update on etiology, transmission, pathogenesis, and prevention and control. Virus Res. 2020;286:198045. doi:10.1016/j.virusres.2020.198045.
  • Lee E,Sandgren K, Duette G, Stylianou VV, Khanna R, Eden JS, Blyth E, Gottlieb D, Cunningham AL, Palmer S. Identification of SARS-CoV-2 nucleocapsid and spike T-cell epitopes for assessing T-cell immunity. J Virol. 2020;94(3). doi:10.1128/JVI.01270-19.
  • Leoni G, Neumann PA, Sumagin R, Denning TL, Nusrat A. Wound repair: role of immune-epithelial interactions. Mucosal Immunol. 2015;8(5):959–968. doi:10.1038/mi.2015.63.
  • Blikslager AT, Moeser AJ, Gookin JL, Jones SL, Odle J. Restoration of barrier function in injured intestinal mucosa. Physiol Rev. 2007;87(2):545–564. doi:10.1152/physrev.00012.2006.
  • Shen L, Weber CR, Raleigh DR, Yu D, Turner JR. Tight junction pore and leak pathways: a dynamic duo. Annu Rev Physiol. 2011;73(1):283–309. doi:10.1146/annurev-physiol-012110-142150.
  • Sambuy Y,De Angelis I, Ranaldi G, Scarino ML, Stammati A, Zucco F. The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol Toxicol. 2005;21(1):1–26. doi:10.1007/s10565-005-0085-6.
  • Blikslager A, Gonzalez L. Equine intestinal mucosal pathobiology. Annu Rev Anim Biosci. 2018;6:157–175. doi:10.1146/annurev-animal-030117-014748.
  • Nusrat A, Delp C, Madara JL. Intestinal epithelial restitution. characterization of a cell culture model and mapping of cytoskeletal elements in migrating cells. J Clin Invest. 1992;89(5):1501–1511. doi:10.1172/JCI115741.
  • Dignass AU, Podolsky DK. Cytokine modulation of intestinal epithelial cell restitution: central role of transforming growth factor beta. Gastroenterology. 1993;105(5):1323–1332. doi:10.1016/0016-5085(93)90136-Z.
  • Furuta GT, et al. Hypoxia-inducible factor 1-dependent induction of intestinal trefoil factor protects barrier function during hypoxia. J Exp Med. 2001;193(9):1027–1034. doi:10.1084/jem.193.9.1027.
  • Taylor CT, Colgan SP. Hypoxia and gastrointestinal disease. J Mol Med (Berl). 2007;85(12):1295–1300. doi:10.1007/s00109-007-0277-z.
  • Louis NA, et al. Selective induction of mucin-3 by hypoxia in intestinal epithelia. J Cell Biochem. 2006;99(6):1616–1627. doi:10.1002/jcb.20947.
  • Keely S, et al. Selective induction of integrin beta1 by hypoxia-inducible factor: implications for wound healing. FASEB J. 2009;23(5):1338–1346. doi:10.1096/fj.08-125344.
  • Tong Q, et al. Interferon-gamma inhibits T84 epithelial cell migration by redirecting transcytosis of beta1 integrin from the migrating leading edge. J Immunol. 2005;175(6):4030–4038. doi:10.4049/jimmunol.175.6.4030.
  • Garcia-Hernandez V, Quiros M, Nusrat A. Intestinal epithelial claudins: expression and regulation in homeostasis and inflammation. Ann N Y Acad Sci. 2017;1397(1):66–79. doi:10.1111/nyas.13360.
  • Nighot PK, et al. ClC-2 is required for rapid restoration of epithelial tight junctions in ischemic-injured murine jejunum. Exp Cell Res. 2009;315(1):110–118. doi:10.1016/j.yexcr.2008.10.001.
  • Nighot PK, Leung L, Ma TY. Chloride channel ClC- 2 enhances intestinal epithelial tight junction barrier function via regulation of caveolin-1 and caveolar trafficking of occludin. Exp Cell Res. 2017;352(1):113–122. doi:10.1016/j.yexcr.2017.01.024.
  • Iizuka M, Konno S. Wound healing of intestinal epithelial cells. World J Gastroenterol. 2011;17(17):2161–2171. doi:10.3748/wjg.v17.i17.2161.
  • Blais M, et al. A gene expression programme induced by bovine colostrum whey promotes growth and wound-healing processes in intestinal epithelial cells. J Nutr Sci. 2014;3:e57. doi:10.1017/jns.2014.56.
  • Bu H-F, et al. Milk fat globule–EGF factor 8/lactadherin plays a crucial role in maintenance and repair of murine intestinal epithelium. J Clin Invest. 2007;117(12):3673–3683. doi:10.1172/JCI31841.
  • Cario, et al., Effects of exogenous zinc supplementation on intestinal epithelial repair in vitro. Eur J Clin Invest, 2000. 30(5): p. 419–428. 10.1046/j.1365-2362.2000.00618.x
  • Ciacci C, Lind SE, Podolsky DK. Transforming growth factor beta regulation of migration in wounded rat intestinal epithelial monolayers. Gastroenterology. 1993;105(1):93–101. doi:10.1016/0016-5085(93)90014-4.
  • Liu L, et al. HuR enhances early restitution of the intestinal epithelium by increasing Cdc42 translation. Mol Cell Biol. 2017;37(7):e00574–16. doi:10.1128/MCB.00574-16.
  • Moyer RA, et al. Rho activation regulates CXCL12 chemokine stimulated actin rearrangement and restitution in model intestinal epithelia. Lab Invest. 2007;87(8):807–817. doi:10.1038/labinvest.3700595.
  • Rhoads JM, et al. Arginine stimulates intestinal cell migration through a focal adhesion kinase dependent mechanism. Gut. 2004;53(4):514–522. doi:10.1136/gut.2003.027540.
  • Abey SK, et al. Data supporting the effects of lysozyme on mRNA and protein expression in a colonic epithelial scratch wound model. Data in Brief. 2017;11:15–18. doi:10.1016/j.dib.2016.12.043.
  • Davudian S, et al. BACH1 silencing by siRNA inhibits migration of HT-29 colon cancer cells through reduction of metastasis-related genes. Biomed Pharmacother. 2016;84:191–198. doi:10.1016/j.biopha.2016.09.021.
  • Kelm M, et al. Targeting epithelium-expressed sialyl Lewis glycans improves colonic mucosal wound healing and protects against colitis. JCI Insight. 2020;5(12). doi:10.1172/jci.insight.135843.
  • Yue PY, et al. A simplified method for quantifying cell migration/wound healing in 96-well plates. J Biomol Screen. 2010;15(4):427–433. doi:10.1177/1087057110361772.
  • Yarrow JC, et al. A high-throughput cell migration assay using scratch wound healing, a comparison of image-based readout methods. BMC Biotechnol. 2004;4(1):21. doi:10.1186/1472-6750-4-21.
  • Jonkman JEN, et al. An introduction to the wound healing assay using live-cell microscopy. Cell Adh Migr. 2014;8(5):440–451. doi:10.4161/cam.36224.
  • Pirkmajer S, Chibalin AV. Serum starvation: caveat emptor. American J Physiol-Cell Physiol. 2011;301:C272–C279.
  • Cormier N, et al. Optimization of the wound scratch assay to detect changes in murine mesenchymal stromal cell migration after damage by soluble cigarette smoke extract. J Vis Exp. 2015;(106):e53414. doi:10.3791/53414.
  • Flomerfelt FA, Gress RE. Analysis of cell proliferation and homeostasis using EdU labeling. Methods Mol Biol. 2016;1323:211–220.
  • Polk DB. Epidermal growth factor receptor–stimulated intestinal epithelial cell migration requires phospholipase C activity. Gastroenterology. 1998;114(3):493–502. doi:10.1016/S0016-5085(98)70532-3.
  • Rhoads JM, et al. Arginine Stimulates cdx2-transformed intestinal epithelial cell migration via a mechanism requiring both nitric oxide and phosphorylation of p70 S6 kinase. J Nutr. 2008;138(9):1652–1657. doi:10.1093/jn/138.9.1652.
  • Dise RS, et al. Epidermal growth factor stimulates Rac activation through Src and phosphatidylinositol 3-kinase to promote colonic epithelial cell migration. Am J Physiol Gastrointest Liver Physiol. 2008;294(1):G276–85. doi:10.1152/ajpgi.00340.2007.
  • Kam Y, et al. A novel circular invasion assay mimics in vivo invasive behavior of cancer cell lines and distinguishes single-cell motility in vitro. BMC Cancer. 2008;8(1):198. doi:10.1186/1471-2407-8-198.
  • Poujade M, et al. Collective migration of an epithelial monolayer in response to a model wound. Proc Natl Acad Sci. 2007;104(41):15988. doi:10.1073/pnas.0705062104.
  • Pratt BM, et al. Mechanisms of cytoskeletal regulation. modulation of aortic endothelial cell spectrin by the extracellular matrix. Am J Pathol. 1984;117(3):349–354.
  • Glenn HL, Messner J, Meldrum DR. A simple non-perturbing cell migration assay insensitive to proliferation effects. Sci Rep. 2016;6(1):31694. doi:10.1038/srep31694.
  • Omelchenko T, Hall A. Myosin-IXA regulates collective epithelial cell migration by targeting RhoGAP activity to cell-cell junctions. Curr Biol: CB. 2012;22(4):278–288. doi:10.1016/j.cub.2012.01.014.
  • Nyegaard S, Christensen B, Rasmussen JT. An optimized method for accurate quantification of cell migration using human small intestine cells. Metab Eng Commun. 2016;3:76–83. doi:10.1016/j.meteno.2016.03.002.
  • Luissint AC, Parkos CA, Nusrat A. Inflammation and the intestinal barrier: leukocyte-epithelial cell interactions, cell junction remodeling, and mucosal repair. Gastroenterology. 2016;151(4):616–632. doi:10.1053/j.gastro.2016.07.008.
  • Phillipson M, Kubes P. The healing power of neutrophils. Trends Immunol. 2019;40(7):635–647. doi:10.1016/j.it.2019.05.001.
  • Hall CHT, Campbell EL, Colgan SP. Neutrophils as components of mucosal homeostasis. Cell Mol Gastroenterol Hepatol. 2017;4(3):329–337. doi:10.1016/j.jcmgh.2017.07.001.
  • Brazil JC, et al. Neutrophil migration across intestinal epithelium: evidence for a role of CD44 in regulating detachment of migrating cells from the luminal surface. J Immunol. 2010;185(11):7026–7036. doi:10.4049/jimmunol.1001293.
  • Ivanov AI, Parkos CA, Nusrat A. Cytoskeletal regulation of epithelial barrier function during inflammation. Am J Pathol. 2010;177(2):512–524. doi:10.2353/ajpath.2010.100168.
  • Gu AY, et al. In vitro wounding models using the electric cell-substrate impedance sensing (ECIS)-ztheta technology. Biosensors (Basel). 2018;8(4).
  • Keese CR, et al. Electrical wound-healing assay for cells in vitro. Proc Natl Acad Sci U S A. 2004;101(6):1554–1559. doi:10.1073/pnas.0307588100.
  • Kucharzik T, et al. Activation of epithelial CD98 glycoprotein perpetuates colonic inflammation. Lab Invest. 2005;85(7):932–941. doi:10.1038/labinvest.3700289.
  • Charrier L, et al. ADAM-15 inhibits wound healing in human intestinal epithelial cell monolayers. Am J Physiol Gastrointest Liver Physiol. 2005;288(2):G346–53. doi:10.1152/ajpgi.00262.2004.
  • Ootani A, et al. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med. 2009;15(6):701–706. doi:10.1038/nm.1951.
  • Sato T, et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature. 2011;469(7330):415–418. doi:10.1038/nature09637.
  • Spence JR, et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature. 2011;470(7332):105–109. doi:10.1038/nature09691.
  • Montenegro-Miranda PS, et al. A novel organoid model of damage and repair identifies HNF4alpha as a critical regulator of intestinal epithelial regeneration. Cell Mol Gastroenterol Hepatol. 2020;10(2):209–223. doi:10.1016/j.jcmgh.2020.02.007.
  • Qu M, et al. Establishment of intestinal organoid cultures modeling injury-associated epithelial regeneration. Cell Res. 2021;31(3):259–271. doi:10.1038/s41422-020-00453-x.
  • Dutton JS, et al. Primary cell-derived intestinal models: recapitulating physiology. Trends Biotechnol. 2019;37(7):744–760. doi:10.1016/j.tibtech.2018.12.001.
  • Quaroni A, Wands J, Trelstad RL, Isselbacher KJ. Epithelioid cell cultures from rat small intestine. Characterization by morphologic and immunologic criteria. J Cell Biol. 1979;80(2):248–265. doi:10.1083/jcb.80.2.248.
  • Zhang L,Zhang M, Chen X, He Y, Chen R, Zhang J, Huang J, Ouyang C, Shi G. Identification of the tubulointerstitial infiltrating immune cell landscape and immune marker related molecular patterns in lupus nephritis using bioinformatics analysis. Ann Transl Med. 2020;8(23):1596. doi:10.21037/atm-20-7507.
  • Puthia MK,Sio SW, Lu J, Tan KS. Blastocystis ratti induces contact-independent apoptosis, F-actin rearrangement, and barrier function disruption in IEC-6 cells. Infect Immun. 2006;74(7):4114–4123. doi:10.1128/IAI.00328-06.
  • Thomas C, Oates PS. IEC-6 cells are an appropriate model of intestinal iron absorption in rats. J Nutr. 2002;132(4):680–687. doi:10.1093/jn/132.4.680.
  • Bhattacharya S, Ray RM, Johnson LR. Prevention of TNF-alpha-induced apoptosis in polyamine-depleted IEC-6 cells is mediated through the activation of ERK1/2. Am J Physiol Gastrointest Liver Physiol. 2004;286(3):G479–90. doi:10.1152/ajpgi.00342.2003.
  • Liao Y, Zhang M, Lönnerdal B. Growth factor TGF-β induces intestinal epithelial cell (IEC-6) differentiation: miR-146b as a regulatory component in the negative feedback loop. Genes Nutr. 2013;8(1):69–78. doi:10.1007/s12263-012-0297-3.
  • Kolinska J, et al. Constitutive expression of IL-18 and IL-18R in differentiated IEC-6 cells: effect of TNF-alpha and IFN-gamma treatment. J Interferon Cytokine Res. 2008;28(5):287–296. doi:10.1089/jir.2006.0130.
  • Wang JY. Cellular signaling in rapid intestinal epithelial restitution: implication of polyamines and K+ channels. Sheng Li Xue Bao. 2003;55:365–372.
  • Rao JN, et al. Differentiated intestinal epithelial cells exhibit increased migration through polyamines and myosin II. Am J Physiol. 1999;277(6):G1149–58. doi:10.1152/ajpgi.1999.277.6.G1149.
  • McCormack SA, et al. Polyamine depletion alters the relationship of F-actin, G-actin, and thymosin beta4 in migrating IEC-6 cells. Am J Physiol. 1999;276(2):C459–68. doi:10.1152/ajpcell.1999.276.2.C459.
  • Zhang CL, et al. Modulation of intestinal epithelial cell proliferation, migration, and differentiation in vitro by Astragalus polysaccharides. PLoS One. 2014;9(8):e106674. doi:10.1371/journal.pone.0106674.
  • Xu DZ, et al. The effect of hypoxia/reoxygenation on the cellular function of intestinal epithelial cells. J Trauma. 1999;46(2):280–285. doi:10.1097/00005373-199902000-00014.
  • Jia Z, et al. Ischemic postconditioning protects against intestinal ischemia/reperfusion injury via the HIF-1alpha/miR-21 axis. Sci Rep. 2017;7(1):16190. doi:10.1038/s41598-017-16366-6.
  • Simon-Assmann P, et al. In vitro models of intestinal epithelial cell differentiation. Cell Biol Toxicol. 2007;23(4):241–256. doi:10.1007/s10565-006-0175-0.
  • Pinto M, et al. Enterocytic differentiation of cultured human colon cancer cells by 482 replacement of glucose by galactose in the medium. 481 Zweibaum, A. Btol Celt. 1982;44:193–196.
  • Gayet J, et al. Extensive characterization of genetic alterations in a series of human colorectal cancer cell lines. Oncogene. 2001;20(36):5025–5032. doi:10.1038/sj.onc.1204611.
  • DeMarco VG, et al. Glutamine and barrier function in cultured Caco-2 epithelial cell monolayers. J Nutr. 2003;133(7):2176–2179. doi:10.1093/jn/133.7.2176.
  • Khan N, Binder L, Pantakani DVK, Asif AR. MPA modulates tight junctions‘ permeability via midkine/PI3K pathway in Caco-2 cells: a possible mechanism of leak-flux diarrhea in organ transplanted patients. Front Physiol. 2017;8(438). doi:10.3389/fphys.2017.00438.
  • Peng L, et al. Effects of butyrate on intestinal barrier function in a Caco-2 cell monolayer model of intestinal barrier. Pediatr Res. 2007;61(1):37–41. doi:10.1203/01.pdr.0000250014.92242.f3.
  • Fernando EH, et al. Inhibition of intestinal epithelial wound healing through protease-activated receptor-2 activation in Caco2 Cells. J Pharmacol Exp Ther. 2018;367(2):382–392. doi:10.1124/jpet.118.249524.
  • Czulkies BA, et al. Loss of LSR affects epithelial barrier integrity and tumor xenograft growth of CaCo-2 cells. Oncotarget. 2017;8(23):37009–37022. doi:10.18632/oncotarget.10425.
  • Lian P, et al. Hypoxia and heat stress affect epithelial integrity in a Caco-2/HT-29 co-culture. Sci Rep. 2021;11(1):13186. doi:10.1038/s41598-021-92574-5.
  • Tazuke Y, et al. The effect of hypoxia on permeability and bacterial translocation in Caco-2 adult and I-407 fetal enterocyte cell culture models. Pediatr Surg Int. 2003;19(5):316–320. doi:10.1007/s00383-003-1002-9.
  • Peterson MD, Mooseker MS. Characterization of the enterocyte-like brush border cytoskeleton of the C2BBe clones of the human intestinal cell line, Caco-2. J Cell Sci. 1992;102(3):581–600. doi:10.1242/jcs.102.3.581.
  • Rufino AT, et al. Differential effects of the essential oils of Lavandula luisieri and Eryngium duriaei subsp. juresianum in cell models of two chronic inflammatory diseases. Pharm Biol. 2015;53(8):1220–1230. doi:10.3109/13880209.2014.970701.
  • Behrens I, et al. Transport of lipophilic drug molecules in a new mucus-secreting cell culture model based on HT29-MTX cells. Pharm Res. 2001;18(8):1138–1145. doi:10.1023/A:1010974909998.
  • Giromini C, et al. In vitro-digested milk proteins: evaluation of angiotensin-1-converting enzyme inhibitory and antioxidant activities, peptidomic profile, and mucin gene expression in HT29-MTX cells. J Dairy Sci. 2019;102(12):10760–10771. doi:10.3168/jds.2019-16833.
  • Lozoya-Agullo I, et al. Usefulness of Caco-2/HT29-MTX and Caco-2/HT29-MTX/Raji B coculture models to predict intestinal and colonic permeability compared to Caco-2 monoculture. Mol Pharm. 2017;14(4):1264–1270. doi:10.1021/acs.molpharmaceut.6b01165.
  • Gillois K, Stoffels C, Leveque M, Fourquaux I, Blesson J, Mils V, Cambier S, Vignard J, Terrisse H, Mirey G, et al. Repeated exposure of Caco-2 versus Caco-2/HT29-MTX intestinal cell models to (nano)silver in vitro: comparison of two commercially available colloidal silver products. Sci Total Environ. 2021;754:142324. doi:10.1016/j.scitotenv.2020.142324.
  • Tawiah A, Moreau F, Kumar M, Tiwari S, Falguera J, Chadee K. High MUC2 mucin biosynthesis in goblet cells impedes restitution and wound healing by elevating endoplasmic reticulum stress and altered production of growth factors. Am J Pathol. 2018;188(9):2025–2041. doi:10.1016/j.ajpath.2018.05.013.
  • Iseri OD, Sahin FI, Terzi YK, Yurtcu E, Erdem SR, Sarialioglu F. beta-Adrenoreceptor antagonists reduce cancer cell proliferation, invasion, and migration. Pharm Biol. 2014;52(11):1374–1381. doi:10.3109/13880209.2014.892513.
  • He L, et al. Administration of alpha-ketoglutarate improves epithelial restitution under stress injury in early-weaning piglets. Oncotarget. 2017;8(54):91965–91978.
  • Ali AA, et al. Salutary effect of calcium channel blockade following hypoxic and septic insult. J Trauma Acute Care Surg. 2014;77(1):40–46. discussion 45-6. doi:10.1097/TA.0000000000000260.
  • Devriese S, Van den Bossche L, Van Welden S, Holvoet T, Pinheiro I, Hindryckx P, De Vos M, Laukens D. T84 monolayers are superior to Caco-2 as a model system of colonocytes. Histochem Cell Biol. 2017;148(1):85–93. doi:10.1007/s00418-017-1539-7.
  • Ao M, Venkatasubramanian J, Boonkaewwan C, Ganesan N, Syed A, Benya RV, Rao MC. Lubiprostone activates Cl- secretion via cAMP signaling and increases membrane CFTR in the human colon carcinoma cell line, T84. Dig Dis Sci. 2011;56(2):339–351. doi:10.1007/s10620-010-1495-8.
  • Sumagin R, et al. Neutrophil interactions with epithelial-expressed ICAM-1 enhances intestinal mucosal wound healing. Mucosal Immunol. 2016;9(5):1151–1162. doi:10.1038/mi.2015.135.
  • Nusrat A, et al. Neutrophil migration across model intestinal epithelia: monolayer disruption and subsequent events in epithelial repair. Gastroenterology. 1997;113(5):1489–1500. doi:10.1053/gast.1997.v113.pm9352851.
  • Vergauwen H. The IPEC-J2 cell line, in the impact of food bioactives on health: in vitro and ex vivo models Verhoeckx K, editor 2015:Cham (CH) 125–134
  • Brosnahan AJ, Brown DR. Porcine IPEC-J2 intestinal epithelial cells in microbiological investigations. Vet Microbiol. 2012;156(3–4):229–237. doi:10.1016/j.vetmic.2011.10.017.
  • Schierack P,Nordhoff M, Pollmann M, Weyrauch KD, Amasheh S, Lodemann U, Jores J, Tachu B, Kleta S, Blikslager A, Tedin K. Characterization of a porcine intestinal epithelial cell line for in vitro studies of microbial pathogenesis in swine. Histochem Cell Biol. 2006;125(3):293–305. doi:10.1007/s00418-005-0067-z.
  • Zakrzewski S, J.r SK, Lee I, Lee I, Schulzke J, Schulzke J, Schulzke J, Schulzke J, Gunzel D, Gunzel D. Improved cell line IPEC J2, characterized as a model for porcine jejunal epithelium. PLoS One. 2013;8(11):e79643. doi:10.1371/journal.pone.0079643.
  • Madara JL, Stafford J, Dharmsathaphorn K, Carlson S. Structural analysis of a human intestinal epithelial cell line. Gastroenterology. 1987;92(5 Pt 1):1133–1145. doi:10.1016/S0016-5085(87)91069-9.
  • Domingue JC,Ao M, Sarathy J, Rao MC. Chenodeoxycholic acid requires activation of EGFR, EPAC, and Ca2+ to stimulate CFTR-dependent Cl- secretion in human colonic T84 cells. Am J Physiol Cell Physiol. 2016;311(5):C777–C792. doi:10.1152/ajpcell.00168.2016.
  • Shapiro M, Matthews J, Hecht G, Delp C, Madara JL. Stabilization of F-actin prevents cAMP-elicited Cl- secretion in T84 cells. J Clin Invest. 1991;87(6):1903–1909. doi:10.1172/JCI115215.
  • Tabcharani J,Low W, Elie D, Hanrahan JW. Low‐conductance chloride channel activated by cAMP in the epithelial cell line T84. FEBS Lett. 1990;270(1–2):157–164. doi:10.1016/0014-5793(90)81257-O.
  • Vajanaphanich M,Kachintorn UD, Barrett KE, Cohn JA, Dharmsathaphorn KI, Traynor-Kaplan AL. Phosphatidic acid modulates Cl- secretion in T84 cells: varying effects depending on mode of stimulation. Am J Physiol. 1993;264(5 Pt 1):C1210–8. doi:10.1152/ajpcell.1993.264.5.C1210.
  • Panjwani N. Role of galectins in re-epithelialization of wounds. Ann Transl Med. 2014;2(9):89. doi:10.3978/j.2305-5839.2014.09.09.
  • Wang R,Zhao H, Zhang Y, Zhu H, Su Q, Qi H, Deng J, Xiao C. Identification of microRNA-92a-3p as an essential regulator of tubular epithelial cell pyroptosis by targeting Nrf1 via HO-1. Front Genet. 2020;11:616947. doi:10.3389/fgene.2020.616947.
  • Boger KB, Blikslager, Anthony CP, Madan C, Laumas S, Krishnan B, Jin Y. Establishment and characterization of a leaky porcine jejunal cell line grown as a 2-dimensional monolayer using crypt culture media and their response to the tight junction agent larazotide acetate. Gastroenterology. 2019;156(6):S–486. Su1017 doi: 10.1016/S0016-5085(19)38076-X
  • Bosch-Camos L,López E, Navas MJ, Pina-Pedrero S, Accensi F, Correa-Fiz F, Park C, Carrascal M, Domínguez J, Salas ML, Nikolin V. Identification of promiscuous African swine fever virus T-cell determinants using a multiple technical approach. Vaccines (Basel). 2021;9(1).
  • Ma X, X. Fan P, Li LS, Qiao SY, Zhang GL, Li DF. Butyrate promotes the recovering of intestinal wound healing through its positive effect on the tight junctions. J Anim Sci. 2012;90(Suppl suppl_4):266–268. doi:10.2527/jas.50965.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.