149
Views
1
CrossRef citations to date
0
Altmetric
Review

Spatial composition and turnover of the main molecules in the adult glomerular basement membrane

ORCID Icon, , &
Article: 2110798 | Received 22 Mar 2022, Accepted 03 Aug 2022, Published online: 12 Aug 2022

References

  • Schlöndorff D, Wyatt CM, Campbell KN. Revisiting the determinants of the glomerular filtration barrier: what goes round must come round. Kidney Int. 2017;92(3):222–238. doi:10.1016/j.kint.2017.06.003.
  • Naylor RW, Morais M, Lennon R. Complexities of the glomerular basement membrane. Nat Rev Nephrol. 2020;17(2):112–127.
  • Kanwar YS, Linker A, Farquhar MG. Increased permeability of the glomerular basement membrane to ferritin after removal of glycosaminoglycans (heparan sulfate) by enzyme digestion. J Cell Biol. 1980;86(2):688–693. doi:10.1083/jcb.86.2.688.
  • Rennke HG, Venkatachalam MA. Glomerular permeability: in vivo tracer studies with polyanionic and polycationic ferritins. Kidney Int. 1977;11(1):44–53. doi:10.1038/ki.1977.6.
  • Bertolatus JA, Hunsicker LG. Glomerular sieving of anionic and neutral bovine albumins in proteinuric rats. Kidney Int. 1985;28(3):467–476. doi:10.1038/ki.1985.153.
  • Ciarimboli G, Schurek HJ, Zeh M, Flohr H, Bokenkamp A, Fels LM, Kilian I, Stolte H. Role of albumin and glomerular capillary wall charge distribution on glomerular permselectivity: studies on the perfused-fixed rat kidney model. Pflugers Arch. 1999;438(6):883–891. doi:10.1007/s004249900120.
  • Sverrisson K, Axelsson J, Rippe A, Asgeirsson D, Rippe B. Dynamic, size-selective effects of protamine sulfate and hyaluronidase on the rat glomerular filtration barrier in vivo. Am J Physiol Renal Physiol. 2014;307(10):F1136–43. doi:10.1152/ajprenal.00181.2014.
  • Assel E, Neumann KH, Schurek HJ, Sonnenburg C, Stolte H. Glomerular albumin leakage and morphology after neutralization of polyanions. I. Albumin clearance and sieving coefficient in the isolated perfused rat kidney. Ren Physiol. 1984;7:357–364.
  • Bertolatus JA, Abuyousef M, Hunsicker LG. Glomerular sieving of high molecular weight proteins in proteinuric rats. Kidney Int. 1987;31(6):1257–1266. doi:10.1038/ki.1987.139.
  • Sorensson J, Ohlson M, Lindstrom K, Haraldsson B. Glomerular charge selectivity for horseradish peroxidase and albumin at low and normal ionic strengths. Acta Physiol Scand. 1998;163(1):83–91. doi:10.1046/j.1365-201x.1998.00315.x.
  • Haraldsson B, Nystrom J, Deen WM. Properties of the glomerular barrier and mechanisms of proteinuria. Physiol Rev. 2008;88(2):451–487. doi:10.1152/physrev.00055.2006.
  • Daniels BS. Increased albumin permeability in vitro following alterations of glomerular charge is mediated by the cells of the filtration barrier. J Lab Clin Med. 1994;124:224–230.
  • Mohos SC, Skoza L. Histochemical demonstration and localization of sialoproteins in the glomerulus. Exp Mol Pathol. 1970;12(3):316–323. doi:10.1016/0014-4800(70)90063-8.
  • Kasinath BS. The podocyte and the proteoglycan. Am J Physiol Renal Physiol. 2016;311(2):F310–1. doi:10.1152/ajprenal.00295.2016.
  • Quaggin SE. Sizing up sialic acid in glomerular disease. J Clin Invest. 2007;117(6):1480–1483. doi:10.1172/JCI32482.
  • Kawachi H, Miyauchi N, Suzuki K, Han GD, Orikasa M, Shimizu F. Role of podocyte slit diaphragm as a filtration barrier. Nephrology. 2006;11(4):274–281. doi:10.1111/j.1440-1797.2006.00583.x.
  • Grahammer F, Schell C, Huber TB. The podocyte slit diaphragm—from a thin grey line to a complex signalling hub. Nat Rev Nephrol. 2013;9:587–598. doi:10.1038/nrneph.2013.169.
  • Gong Y, Sunq A, Roth RA, Hou J. Inducible expression of Claudin-1 in glomerular podocytes generates aberrant tight junctions and proteinuria through slit diaphragm destabilization. J Am Soc Nephrol. 2017;28:106–117. doi:10.1681/ASN.2015121324.
  • Akilesh S. Normal kidney function and structure. In: McManus LM, Mitchell RN, editors. Pathobiology of human disease. San Diego, USA: Academic Press; 2014. p. 2716–2733.
  • Neumann KH, Kellner C, Kühn K, Stolte H, Schurek H-J. Age-dependent thickening of glomerular basement membrane has no major effect on glomerular hydraulic conductivity. Nephrol Dial Transplant. 2004;19(4):805–811. doi:10.1093/ndt/gfh067.
  • McAdams AJ. Glomerular capillary wall basement membrane really does have laminae lucidae: a defense. Pediatr Dev Pathol. 1999;2(3):260–263. doi:10.1007/s100249900121.
  • Marshall CB. Rethinking glomerular basement membrane thickening in diabetic nephropathy: adaptive or pathogenic? Am J Physiol. 2016;311:F831–F43.
  • Yamada E. The fine structure of the renal glomerulus of the mouse. J Cell Biol. 1955;1(6):551–566. doi:10.1083/jcb.1.6.551.
  • Yang H-C, Zuo Y, Fogo AB. Models of chronic kidney disease. Drug Discov Today. 2010;7:13–19.
  • Farquhar MG. The glomerular basement membrane: not gone, just forgotten. J Clin Invest. 2006;116(8):2090–2093. doi:10.1172/JCI29488.
  • Chan FL, Inoue S. Lamina lucida of basement membrane: an artefact. Microsc Res Tech. 1994;28(1):48–59. doi:10.1002/jemt.1070280106.
  • Mouse genome informatics, gene ontology browser: basement membrane. 2022. Available from: http://www.informatics.jax.org/vocab/gene_ontology/GO:0005604. Accessed 29 July 2022.
  • Suleiman H, Zhang L, Roth R, Heuser JE, Miner JH, Shaw AS, Dani A. Nanoscale protein architecture of the kidney glomerular basement membrane. Elife. 2013;2:e01149. doi:10.7554/eLife.01149.
  • Lennon R, Byron A, Humphries JD, Randles MJ, Carisey A, Murphy S, Knight D, Brenchley PE, Zent R, Humphries MJ, et al. Global analysis reveals the complexity of the human glomerular extracellular matrix. J Am Soc Nephrol. 2014;25(5):939–951. doi:10.1681/ASN.2013030233.
  • Timpl R, Wiedemann H, van Delden V, Furthmayr H, Kuhn K. A network model for the organization of type IV collagen molecules in basement membranes. Eur J Biochem. 1981;120(2):203–211. doi:10.1111/j.1432-1033.1981.tb05690.x.
  • Eble JA, Ries A, Lichy A, Mann K, Stanton H, Gavrilovic J, Murphy G, Kühn K. The recognition sites of the integrins alpha1beta1 and alpha2beta1 within collagen IV are protected against gelatinase A attack in the native protein. J Biol Chem. 1996;271(48):30964–30970. doi:10.1074/jbc.271.48.30964.
  • Khoshnoodi J, Pedchenko V, Hudson BG. Mammalian collagen IV. Microsc Res Tech. 2008;71(5):357–370. doi:10.1002/jemt.20564.
  • Abrahamson DR. Role of the podocyte (and glomerular endothelium) in building the GBM. Semin Nephrol. 2012;32(4):342–349. doi:10.1016/j.semnephrol.2012.06.005.
  • Sevcnikar B, Schaffner I, Chuang CY, Gamon L, Paumann-Page M, Hofbauer S, Davies MJ, Furtmüller PG, Obinger C. The leucine-rich repeat domain of human peroxidasin 1 promotes binding to laminin in basement membranes. Arch Biochem Biophys. 2020;689:108443. doi:10.1016/j.abb.2020.108443.
  • Cummings CF, Pedchenko V, Brown KL, Colon S, Rafi M, Jones-Paris C, Pokydeshava E, Liu M, Pastor-Pareja JC, Stothers C, et al. Extracellular chloride signals collagen IV network assembly during basement membrane formation. J Cell Biol. 2016;213(4):479–494. doi:10.1083/jcb.201510065.
  • Suh JH, Miner JH. The glomerular basement membrane as a barrier to albumin. Nat Rev Nephrol. 2013;9(8):470–477. doi:10.1038/nrneph.2013.109.
  • Lin MH, Miller JB, Kikkawa Y, Suleiman HY, Tryggvason K, Hodges BL, Miner JH. Laminin-521 protein therapy for glomerular basement membrane and podocyte abnormalities in a model of Pierson syndrome. J Am Soc Nephrol. 2018;29(5):1426–1436. doi:10.1681/ASN.2017060690.
  • Hamill KJ, Kligys K, Hopkinson SB, Jones JC. Laminin deposition in the extracellular matrix: a complex picture emerges. J Cell Sci. 2009;122(Pt 24):4409–4417. doi:10.1242/jcs.041095.
  • Miner JH. Renal basement membrane components. Kidney Int. 1999;56(6):2016–2024. doi:10.1046/j.1523-1755.1999.00785.x.
  • Hohenester E, Adams J. Structural biology of laminins. Essays Biochem. 2019;63(3):285–295. doi:10.1042/EBC20180075.
  • Hohenester E, Yurchenco PD. Laminins in basement membrane assembly. Cell Adh Migr. 2013;7(1):56–63. doi:10.4161/cam.21831.
  • Lelongt B, Makino H, Kanwar YS. Status of glomerular proteoglycans in aminonucleoside nephrosis. Kidney Int. 1987;31(6):1299–1310. doi:10.1038/ki.1987.143.
  • Harvey SJ, Jarad G, Cunningham J, Rops AL, van der Vlag J, Berden JH, Moeller MJ, Holzman LB, Burgess RW, Miner JH, et al. Disruption of glomerular basement membrane charge through podocyte-specific mutation of agrin does not alter glomerular permselectivity. Am J Pathol. 2007;171(1):139–152. doi:10.2353/ajpath.2007.061116.
  • Denzer AJ, Schulthess T, Fauser C, Schumacher B, Kammerer RA, Engel J, Ruegg MA. Electron microscopic structure of agrin and mapping of its binding site in laminin-1. EMBO J. 1998;17(2):335–343. doi:10.1093/emboj/17.2.335.
  • Groffen AJ, Ruegg MA, Dijkman H, van de Velden TJ, Buskens CA, van den Born J, Assmann KJ, Monnens LA, Veerkamp JH, van den Heuvel LP, et al. Agrin is a major heparan sulfate proteoglycan in the human glomerular basement membrane. J Histochem Cytochem. 1998;46(1):19–27. doi:10.1177/002215549804600104.
  • Kinnunen AI, Sormunen R, Elamaa H, Seppinen L, Miller RT, Ninomiya Y, Janmey PA, Pihlajaniemi T. Lack of collagen XVIII long isoforms affects kidney podocytes, whereas the short form is needed in the proximal tubular basement membrane. J Biol Chem. 2011;286(10):7755–7764. doi:10.1074/jbc.M110.166132.
  • Noborn F, Gomez Toledo A, Green A, Nasir W, Sihlbom C, Nilsson J, Larson G. Site-specific identification of heparan and chondroitin sulfate glycosaminoglycans in hybrid proteoglycans. Sci Rep. 2016;6:34537. doi:10.1038/srep34537.
  • Tsen G, Halfter W, Kroger S, Cole GJ. Agrin is a heparan sulfate proteoglycan. J Biol Chem. 1995;270(7):3392–3399. doi:10.1074/jbc.270.7.3392.
  • Martinez JR, Dhawan A, Farach-Carson MC. Modular proteoglycan perlecan/HSPG2: mutations, phenotypes, and functions. Genes. 2018;9(11):556. doi:10.3390/genes9110556.
  • Halfter W, Dong S, Schurer B, Cole GJ. Collagen XVIII is a basement membrane heparan sulfate proteoglycan. J Biol Chem. 1998;273(39):25404–25412. doi:10.1074/jbc.273.39.25404.
  • Morita H, Yoshimura A, Kimata K. The role of heparan sulfate in the glomerular basement membrane. Kidney Int. 2008;73(3):247–248. doi:10.1038/sj.ki.5002659.
  • Comper WD. Resolved: normal glomeruli filter nephrotic levels of albumin. J Am Soc Nephrol. 2008;19(3):427–432. doi:10.1681/ASN.2007090997.
  • Miner JH. Glomerular filtration: the charge debate charges ahead. Kidney Int. 2008;74(3):259–261. doi:10.1038/ki.2008.260.
  • Smith DW, Gardiner BS, Zhang L, Grodzinsky AJ. Articular cartilage dynamics. Singapore: Springer; 2019.
  • Smith DW, Gardiner BS, Davidson J, Grodzinsky AJ, Smith DW. Computational model for the analysis of cartilage and cartilage tissue constructs. J Tissue Eng Regener Med. 2016;19(10):1160–1170. doi:10.1080/10255842.2015.1115022.
  • Robinson CJ, Mulloy B, Gallagher JT, Stringer SE. VEGF165-binding sites within heparan sulfate encompass two highly sulfated domains and can be liberated by K5 lyase. J Biol Chem. 2006;281(3):1731–1740. doi:10.1074/jbc.M510760200.
  • Aumailley M, Battaglia C, Mayer U, Reinhardt D, Nischt R, Timpl R, Fox JW. Nidogen mediates the formation of ternary complexes of basement membrane components. Kidney Int. 1993;43(1):7–12. doi:10.1038/ki.1993.3.
  • Weber M. Basement membrane proteins. Kidney Int. 1992;41(3):620–628. doi:10.1038/ki.1992.95.
  • Kohfeldt E, Sasaki T, Gohring W, Timpl R. Nidogen-2: a new basement membrane protein with diverse binding properties. J Mol Biol. 1998;282(1):99–109. doi:10.1006/jmbi.1998.2004.
  • Dai J, Estrada B, Jacobs S, Sanchez-Sanchez BJ, Tang J, Ma M, Magadán-Corpas P, Pastor-Pareja JC, Martín-Bermudo MD. Dissection of Nidogen function in Drosophila reveals tissue-specific mechanisms of basement membrane assembly. PLoS Genet. 2018;14(9):e1007483. doi:10.1371/journal.pgen.1007483.
  • Lebel SP, Chen Y, Gingras D, Chung AE, Bendayan M. Morphofunctional studies of the glomerular wall in mice lacking entactin-1. J Histochem Cytochem. 2003;51(11):1467–1478. doi:10.1177/002215540305101107.
  • Nielsen JS, McNagny KM. The role of podocalyxin in health and disease. J Am Soc Nephrol. 2009;20(8):1669–1676. doi:10.1681/ASN.2008070782.
  • Nielsen JS, McNagny KM. Novel functions of the CD34 family. J Cell Sci. 2008;121(Pt 22):3683–3692. doi:10.1242/jcs.037507.
  • Caulfield JP, Farquhar MG. Distribution of anionic sites in glomerular basement membranes: their possible role in filtration and attachment. Proc Natl Acad Sci U S A. 1976;73(5):1646–1650. doi:10.1073/pnas.73.5.1646.
  • Economou CG, Kitsiou PV, Tzinia AK, Panagopoulou E, Marinos E, Kershaw DB, Kerjaschki D, Tsilibary EC. Enhanced podocalyxin expression alters the structure of podocyte basal surface. J Cell Sci. 2004;117(Pt 15):3281–3294. doi:10.1242/jcs.01163.
  • Lawrence MG, Altenburg MK, Sanford R, Willett JD, Bleasdale B, Ballou B, Wilder J, Li F, Miner JH, Berg UB, et al. Permeation of macromolecules into the renal glomerular basement membrane and capture by the tubules. Proc Natl Acad Sci U S A. 2017;114(11):2958–2963. doi:10.1073/pnas.1616457114.
  • Schiessl IM, Hammer A, Kattler V, Gess B, Theilig F, Witzgall R, Castrop H. Intravital imaging reveals angiotensin II-induced transcytosis of albumin by podocytes. J Am Soc Nephrol. 2016;27(3):731–744. doi:10.1681/ASN.2014111125.
  • Chen S, Wassenhove-McCarthy DJ, Yamaguchi Y, Holzman LB, van Kuppevelt TH, Jenniskens GJ, Wijnhoven TJ, Woods AC, McCarthy KJ. Loss of heparan sulfate glycosaminoglycan assembly in podocytes does not lead to proteinuria. Kidney Int. 2008;74(3):289–299. doi:10.1038/ki.2008.159.
  • Altshuler AE, Penn AH, Yang JA, Kim GR, Schmid-Schonbein GW. Protease activity increases in plasma, peritoneal fluid, and vital organs after hemorrhagic shock in rats. Plos One. 2012;7(3):e32672. doi:10.1371/journal.pone.0032672.
  • Altara R, Manca M, Hermans KC, Daskalopoulos EP, Brunner-La Rocca HP, Hermans RJ, Struijker-Boudier HA, Blankesteijn MW. Diurnal rhythms of serum and plasma cytokine profiles in healthy elderly individuals assessed using membrane based multiplexed immunoassay. J Transl Med. 2015;13:129. doi:10.1186/s12967-015-0477-1.
  • McAdoo SP, Pusey CD. Anti-glomerular basement membrane disease. Clin J Am Soc Nephrol. 2017;12(7):1162–1172. doi:10.2215/CJN.01380217.
  • Schreiner GF. The mesangial phagocyte and its regulation of contractile cell biology. J Am Soc Nephrol. 1992;2(10 Suppl):S74–82. doi:10.1681/ASN.V210s74.
  • Marek I, Becker R, Fahlbusch FB, Menendez-Castro C, Rascher W, Daniel C, Volkert G, Hartner A. Expression of the alpha8 integrin chain facilitates phagocytosis by renal mesangial cells. Cell Physiol Biochem. 2018;45(6):2161–2173. doi:10.1159/000488160.
  • Machnik A, Neuhofer W, Jantsch J, Dahlmann A, Tammela T, Machura K, Park J-K, Beck F-X, Müller DN, Derer W, et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med. 2009;15(5):545–552. doi:10.1038/nm.1960.
  • Keeley DP, Hastie E, Jayadev R, Kelley LC, Chi Q, Payne SG, Jeger JL, Hoffman BD, Sherwood DR. Comprehensive endogenous tagging of basement membrane components reveals dynamic movement within the matrix scaffolding. Dev Cell. 2020;54(1):60–74.e7. doi:10.1016/j.devcel.2020.05.022.
  • Price RG, Spiro RG. Studies on the metabolism of the renal glomerular basement membrane. Turnover measurements in the rat with the use of radiolabeled amino acids. J Biol Chem. 1977;252(23):8597–8602. doi:10.1016/S0021-9258(19)75262-4.
  • Liu P, Xie X, Jin J. Isotopic nitrogen-15 labeling of mice identified long-lived proteins of the renal basement membranes. Sci Rep. 2020;10(1):5317. doi:10.1038/s41598-020-62348-6.
  • Walker F. The origin, turnover and removal of glomerular basement-membrane. J Pathol. 1973;110(3):233–244. doi:10.1002/path.1711100306.
  • Christensen EI, Rennke HG, Carone FA. Renal tubular uptake of protein: effect of molecular charge. Am J Physiol. 1983;244:F436–F41.
  • Christensen EI, Birn H. Megalin and cubilin: synergistic endocytic receptors in renal proximal tubule. Am J Physiol. 2001;280:F562–F73.
  • Miettinen A, Stow JL, Mentone S, Farquhar MG. Antibodies to basement membrane heparan sulfate proteoglycans bind to the laminae rarae of the glomerular basement membrane (GBM) and induce subepithelial GBM thickening. J Exp Med. 1986;163(5):1064–1084. doi:10.1084/jem.163.5.1064.
  • Shinkai Y. Experimental glomerulonephritis induced in rabbits by horseradish peroxidase. Mesangial uptake and processing of immune complexes. Lab Invest. 1982;46:577–583.
  • Kanwar YS, Farquhar MG. Isolation of glycosaminoglycans (heparan sulfate) from glomerular basement membranes. Proc Natl Acad Sci U S A. 1979;76(9):4493–4497. doi:10.1073/pnas.76.9.4493.
  • Parthasarathy N, Spiro RG. Characterization of the glycosaminoglycan component of the renal glomerular basement membrane and its relationship to the peptide portion. J Biol Chem. 1981;256(1):507–513. doi:10.1016/S0021-9258(19)70167-7.
  • Kanwar YS, Rosenzweig LJ, Linker A, Jakubowski ML. Decreased de novo synthesis of glomerular proteoglycans in diabetes: biochemical and autoradiographic evidence. Proc Natl Acad Sci USA. 1983;80(8):2272–2275. doi:10.1073/pnas.80.8.2272.
  • Kashihara N, Watanabe Y, Makino H, Wallner EI, Kanwar YS. Selective decreased de novo synthesis of glomerular proteoglycans under the influence of reactive oxygen species. Proc Natl Acad Sci U S A. 1992;89(14):6309–6313. doi:10.1073/pnas.89.14.6309.
  • Spiro MJ. Sulfate metabolism in the alloxan-diabetic rat: relationship of altered sulfate pools to proteoglycan sulfation in heart and other tissues. Diabetologia. 1987;30(4):259–267. doi:10.1007/BF00270425.
  • Borza DB. Glomerular basement membrane heparan sulfate in health and disease: a regulator of local complement activation. Matrix Biol. 2017;57-58:299–310. doi:10.1016/j.matbio.2016.09.002.
  • Beavan LA, Davies M, Couchman JR, Williams MA, Mason RM. In vivo turnover of the basement membrane and other heparan sulfate proteoglycans of rat glomerulus. Arch Biochem Biophys. 1989;269(2):576–585. doi:10.1016/0003-9861(89)90143-4.
  • Akuffo EL, Hunt JR, Moss J, Woodrow D, Davies M, Mason RM. A steady-state labelling approach to the measurement of proteoglycan turnover in vivo and its application to glomerular proteoglycans. Biochem J. 1996;320(Pt 1):301–308. doi:10.1042/bj3200301.
  • Beavan LA, Davies M, Mason RM. Renal glomerular proteoglycans. An investigation of their synthesis in vivo using a technique for fixation in situ. Biochem J. 1988;251(2):411–418. doi:10.1042/bj2510411.
  • Comper WD, Lee AS, Tay M, Adal Y. Anionic charge concentration of rat kidney glomeruli and glomerular basement membrane. Biochem J. 1993;289(Pt 3):647–652. doi:10.1042/bj2890647.
  • Dong S, Cole GJ, Halfter W. Expression of collagen XVIII and localization of its glycosaminoglycan attachment sites. J Biol Chem. 2003;278(3):1700–1707. doi:10.1074/jbc.M209276200.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.