311
Views
0
CrossRef citations to date
0
Altmetric
Review

A cellular regulator of the niche: telocyte

ORCID Icon & ORCID Icon
Article: 2131955 | Received 02 Sep 2022, Accepted 28 Sep 2022, Published online: 11 Oct 2022

References

  • Rosa I, Ibba-Manneschi L, Guasti D, Perigli G, Faussone-Pellegrini MS, Manetti M. Morphologic evidence of telocytes in human thyroid stromal tissue. J Cell Mol Med. 2022;26(8):312–331. doi:10.1111/jcmm.17282.
  • Vannucchi MG. The telocytes: ten years after their introduction in the scientific literature. An update on their morphology, distribution, and potential roles in the gut. Int J Mol Sci. 2020;21(12):4478. doi:10.3390/ijms21124478.
  • Nie ZY, Zhao MH, Cheng BQ, Pan RF, Wang TR, Qin Y, Zhang XJ. Tanshinone IIA regulates human AML cell proliferation, cell cycle, and apoptosis through miR-497-5p/AKT3 axis. Cancer Cell Int. 2020;20(1):379. doi:10.1186/s12935-020-01468-5.
  • Rosa I, Marini M, Manetti M. Telocytes: an emerging component of stem cell niche microenvironment. J Histochem Cytochem. 2021;69(12):795–818. doi:10.1369/00221554211025489.
  • Maldarine JS, Sanches BDA, Santos VA, Goes RM, Vilamaior PSL, Carvalho HF, Taboga SR. The complex role of telocytes in female prostate tumorigenesis in a rodent model. Cell Biol Int. 2022;46(9):1495–1509. doi:10.1002/cbin.11816.
  • Kostin S. Myocardial telocytes: a specific new cellular entity. J Cell Mol Med. 2010;14(7):1917–1921. doi:10.1111/j.1582-4934.2010.01111.x.
  • Thuneberg L. One hundred years of interstitial cells of Cajal. Microsc Res Tech. 1999;47(4):223–238. doi:10.1002/(SICI)1097-0029(19991115)47:4<223::AID-JEMT2>3.0.CO;2-C.
  • Sanders KM. A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology. 1996;111(2):492–515. doi:10.1053/gast.1996.v111.pm8690216.
  • Popescu LM, Faussone-Pellegrini MS. TELOCYTES - a case of serendipity: the winding way from Interstitial Cells of Cajal (ICC), via Interstitial Cajal-Like Cells (ICLC) to TELOCYTES. J Cell Mol Med. 2010;14(4):729–740. doi:10.1111/j.1582-4934.2010.01059.x.
  • Popescu LM, Gherghiceanu M, Cretoiu D, Radu E. The connective connection: interstitial cells of Cajal (ICC) and ICC-like cells establish synapses with immunoreactive cells. Electron microscope study in situ. J Cell Mol Med. 2005;9(3):714–730. doi:10.1111/j.1582-4934.2005.tb00502.x.
  • Cretoiu SM, Popescu LM. Telocytes revisited. Biomol Concepts. 2014;5(5):353–369. doi:10.1515/bmc-2014-0029.
  • Yang P, Zhu X, Wang L, Ahmed N, Huang Y, Chen H, Zhang Q, Ullah S, Liu T, Guo D, et al. Cellular evidence of telocytes as novel interstitial cells within the magnum of chicken oviduct. Cell Transplant. 2017;26(1):135–143. doi:10.3727/096368916X692942.
  • Fu S, Zhu H, Li S, Wang Y, Bei Y, Xiao J. Telocytes in cardiac protection. Curr Stem Cell Res Ther. 2016;11(5):390–394. doi:10.2174/1574888X1105160509234231.
  • Zheng Y, Wang X. Roles of telocytes in the development of angiogenesis. Adv Exp Med Biol. 2016;913:253–261.
  • Popescu LM, Ciontea SM, Cretoiu D. Interstitial Cajal-like cells in human uterus and fallopian tube. Ann N Y Acad Sci. 2007;1101(1):139–165. doi:10.1196/annals.1389.022.
  • Popescu L. [Remembering academician Prof. Dr Nicolae Cajal–excerpts from speeches celebrating the 90 anniversary of his birth (1919-2004)]. Bacteriol Virusol Parazitol Epidemiol. 2009;54:185–195.
  • Roatesi I, Radu BM, Cretoiu D, Cretoiu SM. Uterine telocytes: a review of current knowledge. Biol Reprod. 2015;93(1):10. doi:10.1095/biolreprod.114.125906.
  • Song D, Cretoiu D, Cretoiu SM, Wang X. Telocytes and lung disease. Histol Histopathol. 2016;31(12):1303–1314. doi:10.14670/HH-11-807.
  • Cretoiu D, Hummel E, Zimmermann H, Gherghiceanu M, Popescu LM. Human cardiac telocytes: 3D imaging by FIB-SEM tomography. J Cell Mol Med. 2014;18(11):2157–2164. doi:10.1111/jcmm.12468.
  • Gherghiceanu M, Hinescu ME, Andrei F, Mandache E, Macarie CE, Faussone-Pellegrini MS, Popescu LM. Interstitial Cajal-like cells (ICLC) in myocardial sleeves of human pulmonary veins. J Cell Mol Med. 2008;12(5A):1777–1781. doi:10.1111/j.1582-4934.2008.00444.x.
  • Gherghiceanu M, Popescu LM. Interstitial Cajal-like cells (ICLC) in human resting mammary gland stroma. Transmission electron microscope (TEM) identification. J Cell Mol Med. 2005;9(4):893–910. doi:10.1111/j.1582-4934.2005.tb00387.x.
  • Hinescu ME, Popescu LM, Gherghiceanu M, Faussone-Pellegrini MS. Interstitial Cajal-like cells in rat mesentery: an ultrastructural and immunohistochemical approach. J Cell Mol Med. 2008;12(1):260–270. doi:10.1111/j.1582-4934.2008.00226.x.
  • Kostin S, Popescu LM. A distinct type of cell in myocardium: interstitial Cajal-like cells (ICLCs). J Cell Mol Med. 2009;13(2):295–308. doi:10.1111/j.1582-4934.2008.00668.x.
  • Popescu LM, Gherghiceanu M, Hinescu ME, Cretoiu D, Ceafalan L, Regalia T, Popescu AC, Ardeleanu C, Mandache E. Insights into the interstitium of ventricular myocardium: interstitial Cajal-like cells (ICLC). J Cell Mol Med. 2006;10(2):429–458. doi:10.1111/j.1582-4934.2006.tb00410.x.
  • Popescu LM, Gherghiceanu M, Manole CG, Faussone-Pellegrini MS. Cardiac renewing: interstitial Cajal-like cells nurse cardiomyocyte progenitors in epicardial stem cell niches. J Cell Mol Med. 2009;13(5):866–886. doi:10.1111/j.1582-4934.2009.00758.x.
  • Zheng Y, Bai C, Wang X. Potential significance of telocytes in the pathogenesis of lung diseases. Expert Rev Respir Med. 2012;6(1):45–49. doi:10.1586/ers.11.91.
  • Yang Y, Sun W, Wu SM, Xiao J, Kong X. Telocytes in human heart valves. J Cell Mol Med. 2014;18(5):759–765. doi:10.1111/jcmm.12285.
  • Rusu MC, Jianu AM, Mirancea N, Didilescu AC, Manoiu VS, Paduraru D. Tracheal telocytes. J Cell Mol Med. 2012;16(2):401–405. doi:10.1111/j.1582-4934.2011.01465.x.
  • Zhang HQ, Lu SS, Xu T, Feng YL, Li H, Ge JB. Morphological evidence of telocytes in mice aorta. Chin Med J (Engl). 2015;128(3):348–352. doi:10.4103/0366-6999.150102.
  • Chen X, Zheng Y, Manole CG, Wang X, Wang Q. Telocytes in human oesophagus. J Cell Mol Med. 2013;17(11):1506–1512. doi:10.1111/jcmm.12149.
  • Vannucchi MG, Traini C, Manetti M, Ibba-Manneschi L, Faussone-Pellegrini MS. Telocytes express PDGFRalpha in the human gastrointestinal tract. J Cell Mol Med. 2013;17(9):1099–1108. doi:10.1111/jcmm.12134.
  • Cretoiu SM. Telocytes in focus. Semin Cell Dev Biol. 2016;55:1–2. doi:10.1016/j.semcdb.2016.05.019.
  • Shoshkes-Carmel M, Wang YJ, Wangensteen KJ, Toth B, Kondo A, Massasa EE, Itzkovitz S, Kaestner KH. Subepithelial telocytes are an important source of Wnts that supports intestinal crypts. Nature. 2018;557(7704):242–246. doi:10.1038/s41586-018-0084-4.
  • Popescu LM, Hinescu ME, Ionescu N, Ciontea SM, Cretoiu D, Ardelean C. Interstitial cells of Cajal in pancreas. J Cell Mol Med. 2005;9(1):169–190. doi:10.1111/j.1582-4934.2005.tb00347.x.
  • Hinescu ME, Ardeleanu C, Gherghiceanu M, Popescu LM. Interstitial Cajal-like cells in human gallbladder. J Mol Histol. 2007;38(4):275–284. doi:10.1007/s10735-007-9099-0.
  • Nicolescu MI, Bucur A, Dinca O, Rusu MC, Popescu LM. Telocytes in parotid glands. Anat Rec (Hoboken). 2012;295(3):378–385. doi:10.1002/ar.21540.
  • Qi G, Lin M, Xu M, Manole CG, Wang X, Zhu T. Telocytes in the human kidney cortex. J Cell Mol Med. 2012;16(12):3116–3122. doi:10.1111/j.1582-4934.2012.01582.x.
  • Zheng Y, Zhu T, Lin M, Wu D, Wang X. Telocytes in the urinary system. J Transl Med. 2012;10(1):188. doi:10.1186/1479-5876-10-188.
  • Vannucchi MG, Traini C. Interstitial cells of Cajal and telocytes in the gut: twins, related or simply neighbor cells? Biomol Concepts. 2016;7(2):93–102. doi:10.1515/bmc-2015-0034.
  • Suciu L, Popescu LM, Gherghiceanu M, Regalia T, Nicolescu MI, Hinescu ME, Faussone-Pellegrini MS. Telocytes in human term placenta: morphology and phenotype. Cells Tissues Organs. 2010;192(5):325–339. doi:10.1159/000319467.
  • Cretoiu SM, Cretoiu D, Popescu LM. Human myometrium - the ultrastructural 3D network of telocytes. J Cell Mol Med. 2012;16(11):2844–2849. doi:10.1111/j.1582-4934.2012.01651.x.
  • Cretoiu SM, Cretoiu D, Marin A, Radu BM, Popescu LM. Telocytes: ultrastructural, immunohistochemical and electrophysiological characteristics in human myometrium. Reproduction. 2013;145(4):357–370. doi:10.1530/REP-12-0369.
  • Li H, Zhang H, Yang L, Lu S, Ge J. Telocytes in mice bone marrow: electron microscope evidence. J Cell Mol Med. 2014;18(6):975–978. doi:10.1111/jcmm.12337.
  • Petre N, Rusu MC, Pop F, Jianu AM. Telocytes of the mammary gland stroma. Folia Morphol (Warsz). 2016;75(2):224–231. doi:10.5603/FM.a2015.0123.
  • Chang Y, Li C, Gan L, Li H, Guo Z, Aikawa E. Telocytes in the Spleen. PLoS One. 2015;10(9):e0138851. doi:10.1371/journal.pone.0138851.
  • Rusu MC, Mirancea N, Manoiu VS, Valcu M, Nicolescu MI, Paduraru D. Skin telocytes. Ann Anat. 2012;194(4):359–367. doi:10.1016/j.aanat.2011.11.007.
  • Ceafalan L, Gherghiceanu M, Popescu LM, Simionescu O. Telocytes in human skin–are they involved in skin regeneration? J Cell Mol Med. 2012;16(7):1405–1420. doi:10.1111/j.1582-4934.2012.01580.x.
  • Corradi LS, Jesus MM, Fochi RA, Vilamaior PS, Justulin LA Jr., Goes RM, Felisbino SL, Taboga SR. Structural and ultrastructural evidence for telocytes in prostate stroma. J Cell Mol Med. 2013;17(3):398–406. doi:10.1111/jcmm.12021.
  • Aleksandrovych V, Pasternak A, Basta P, Sajewicz M, Walocha JA, Gil K. Telocytes: facts, speculations and myths (Review article). Folia Med Cracov. 2017;57:5–22.
  • Edelstein L, Fuxe K, Levin M, Popescu BO, Smythies J. Telocytes in their context with other intercellular communication agents. Semin Cell Dev Biol. 2016;55:9–13. doi:10.1016/j.semcdb.2016.03.010.
  • Edelstein L, Smythies J. Epigenetic aspects of telocytes/cordocytes: jacks of all trades, masters of most. Front Cell Neurosci. 2014;8:32. doi:10.3389/fncel.2014.00032.
  • Tang L, Song D, Qi R, Zhu B, Wang X. Roles of pulmonary telocytes in airway epithelia to benefit experimental acute lung injury through production of telocyte-driven mediators and exosomes. Cell Biol Toxicol. 2022. doi:10.1007/s10565-021-09670-5.
  • Xue Y, Schmollinger S, Attar N, Campos OA, Vogelauer M, Carey MF, Merchant SS, Kurdistani SK. Endoplasmic reticulum-mitochondria junction is required for iron homeostasis. J Biol Chem. 2017;292(32):13197–13204. doi:10.1074/jbc.M117.784249.
  • Manetti M, Guiducci S, Ruffo M, Rosa I, Faussone-Pellegrini MS, Matucci-Cerinic M, Ibba-Manneschi L. Evidence for progressive reduction and loss of telocytes in the dermal cellular network of systemic sclerosis. J Cell Mol Med. 2013;17(4):482–496. doi:10.1111/jcmm.12028.
  • Ye L, Song D, Jin M, Wang X. Therapeutic roles of telocytes in OVA-induced acute asthma in mice. J Cell Mol Med. 2017;21(11):2863–2871. doi:10.1111/jcmm.13199.
  • Liao Z, Chen Y, Duan C, Zhu K, Huang R, Zhao H, Hintze M, Pu Q, Yuan Z, Lv L, et al. Cardiac telocytes inhibit cardiac microvascular endothelial cell apoptosis through exosomal miRNA-21-5p-targeted cdip1 silencing to improve angiogenesis following myocardial infarction. Theranostics. 2021;11(1):268–291. doi:10.7150/thno.47021.
  • Cucu I, Nicolescu MI, Busnatu SS, Manole CG. Dynamic involvement of telocytes in modulating multiple signaling pathways in cardiac cytoarchitecture. Int J Mol Sci. 2022;23(10):10. doi:10.3390/ijms23105769.
  • Smalheiser NR. Exosomal transfer of proteins and RNAs at synapses in the nervous system. Biol Direct. 2007;2(1):35. doi:10.1186/1745-6150-2-35.
  • Albulescu R, Tanase C, Codrici E, Popescu DI, Cretoiu SM, Popescu LM. The secretome of myocardial telocytes modulates the activity of cardiac stem cells. J Cell Mol Med. 2015;19(8):1783–1794. doi:10.1111/jcmm.12624.
  • Cismasiu VB, Popescu LM. Telocytes transfer extracellular vesicles loaded with microRNAs to stem cells. J Cell Mol Med. 2015;19(2):351–358. doi:10.1111/jcmm.12529.
  • Zhou Y, Yang Y, Liang T, Hu Y, Tang H, Song D, Fang H. The regulatory effect of microRNA-21a-3p on the promotion of telocyte angiogenesis mediated by PI3K (p110alpha)/AKT/mTOR in LPS induced mice ARDS. J Transl Med. 2019;17(1):427. doi:10.1186/s12967-019-02168-z.
  • Tang H, Liang T, Zhou Y, Ju H, Song D, Fang H. Telocytes reduce oxidative stress by downregulating DUOX2 expression in inflamed lungs of mice. Acta Biochim Biophys Sin (Shanghai). 2022;54(4):574–582. doi:10.3724/abbs.2022017.
  • Xu Y, Tian H, Luan CG, Sun K, Bao PJ, Zhang HY, Zhang N. Telocytes promote hepatocellular carcinoma by activating the ERK signaling pathway and miR-942-3p/MMP9 axis. Cell Death Discov. 2021;7(1):209. doi:10.1038/s41420-021-00592-z.
  • Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449(7163):682–688. doi:10.1038/nature06174.
  • Bu J, Li H, Li XY, Liu LH, Sun W, Xiao T. Prognostic role of microRNA-126 for survival in malignant tumors: a systematic review and meta-analysis. Dis Markers. 2015;2015:739469. doi:10.1155/2015/739469.
  • van Solingen C, Seghers L, Bijkerk R, Duijs JM, Roeten MK, van Oeveren-rietdijk AM, Baelde HJ, Monge M, Vos JB, de Boer HC, et al. Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. J Cell Mol Med. 2009;13(8A):1577–1585. doi:10.1111/j.1582-4934.2008.00613.x.
  • Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, Richardson JA, Bassel-Duby R, Olson EN. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell. 2008;15(2):261–271. doi:10.1016/j.devcel.2008.07.002.
  • Aschacher T, Aschacher O, Schmidt K, Enzmann FK, Eichmair E, Winkler B, Arnold Z, Nagel F, Podesser BK, Mitterbauer A, et al. The role of telocytes and telocyte-derived exosomes in the development of thoracic aortic aneurysm. Int J Mol Sci. 2022;23(9):4730. doi:10.3390/ijms23094730.
  • Bei Y, Wang F, Yang C, Xiao J. Telocytes in regenerative medicine. J Cell Mol Med. 2015;19(7):1441–1454. doi:10.1111/jcmm.12594.
  • Yang R, Tang Y, Chen X, Yang Y. Telocytes-derived extracellular vesicles alleviate aortic valve calcification by carrying miR-30b. ESC Heart Fail. 2021;8(5):3935–3946. doi:10.1002/ehf2.13460.
  • Fertig ET, Gherghiceanu M, Popescu LM. Extracellular vesicles release by cardiac telocytes: electron microscopy and electron tomography. J Cell Mol Med. 2014;18(10):1938–1943. doi:10.1111/jcmm.12436.
  • Ratajczak MZ, Ratajczak J. Horizontal transfer of RNA and proteins between cells by extracellular microvesicles: 14 years later. Clin Transl Med. 2016;5(1):7. doi:10.1186/s40169-016-0087-4.
  • Li Y, Zhang X, Gao J, Xiao H, Xu M. Increased telocytes involved in the proliferation of vascular smooth muscle cells in rat carotid artery balloon injury. Sci China Life Sci. 2016;59(7):678–685. doi:10.1007/s11427-016-5075-9.
  • Aschacher T, Schmidt K, Aschacher O, Eichmair E, Baranyi U, Winkler B, Grabenwoeger M, Spittler A, Enzmann F, Messner B, et al. Telocytes in the human ascending aorta: characterization and exosome-related KLF-4/VEGF-A expression. J Cell Mol Med. 2021;25(20):9697–9709. doi:10.1111/jcmm.16919.
  • Yao Q, Chen Y, Zhou X. The roles of microRNAs in epigenetic regulation. Curr Opin Chem Biol. 2019;51:11–17. doi:10.1016/j.cbpa.2019.01.024.
  • Yan J, Ma S, Zhang Y, Yin C, Zhou X, Zhang G. Potential role of microRNA-126 in the diagnosis of cancers: a systematic review and meta-analysis. Medicine (Baltimore). 2016;95(35):e4644. doi:10.1097/MD.0000000000004644.
  • Yan T, Cui K, Huang X, Ding S, Zheng Y, Luo Q, Liu X, Zou L. Assessment of therapeutic efficacy of miR-126 with contrast-enhanced ultrasound in preeclampsia rats. Placenta. 2014;35(1):23–29. doi:10.1016/j.placenta.2013.10.017.
  • Meister J, Schmidt MH. H. miR-126 and miR-126*: new players in cancer. ScientificWorldJournal. 2010;10:2090–2100. doi:10.1100/tsw.2010.198.
  • Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, Ivey KN, Bruneau BG, Stainier DY, Srivastava D. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell. 2008;15(2):272–284. doi:10.1016/j.devcel.2008.07.008.
  • Zhao D, Shao H. Effect of blood purification on serum miR-126 and VEGF levels in the process of atherosclerosis in uremic patients under maintenance hemodialysis. Kaohsiung J Med Sci. 2018;34(8):447–455. doi:10.1016/j.kjms.2018.04.004.
  • Li P, Wei J, Li X, Cheng Y, Chen W, Cui Y, Simoncini T, Gu Z, Yang J, Fu X. 17beta-estradiol enhances vascular endothelial Ets-1/miR-126-3p expression: the possible mechanism for attenuation of atherosclerosis. J Clin Endocrinol Metab. 2017;102(2):594–603. doi:10.1210/jc.2016-2974.
  • Hao XZ, Fan HM. Identification of miRNAs as atherosclerosis biomarkers and functional role of miR-126 in atherosclerosis progression through MAPK signalling pathway. Eur Rev Med Pharmacol Sci. 2017;21:2725–2733.
  • Lei H, Li H, Tian L, Li M, Xin Z, Zhang X, Guan R. Icariside II ameliorates endothelial dysfunction by regulating the MAPK pathway via miR-126/SPRED1 in diabetic human cavernous endothelial cells. Drug Des Devel Ther. 2018;12:1743–1751. doi:10.2147/DDDT.S166734.
  • Li N, Li X, Huang S, Shen S, Wang X. miR-126 inhibits colon cancer proliferation and invasion through targeting IRS1, SLC7A5 and TOM1 gene. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2013;38(8):809–817. doi:10.3969/j.1672-7347.2013.08.009.
  • Huang W, Lin J, Zhang H. miR-126: a novel regulator in colon cancer. Biomed Rep. 2016;4(2):131–134. doi:10.3892/br.2015.549.
  • Ma R, Wu P, Shi Q, Song D, Fang H. Telocytes promote VEGF expression and alleviate ventilator-induced lung injury in mice. Acta Biochim Biophys Sin (Shanghai). 2018;50(8):817–825. doi:10.1093/abbs/gmy066.
  • Soofiyani SR, Hosseini K, Ebrahimi T, Frohandeh H, Sadeghi M, Beirami SM, Ghasemnejad T, Tarhriz V, Montazersaheb S. Prognostic value and biological role of miR-126 in breast cancer. Microrna. 2022;11. doi:10.2174/1876402914666220428123203.
  • Monaco F, Gaetani S, Alessandrini F, Tagliabracci A, Bracci M, Valentino M, Neuzil J, Amati M, Bovenzi M, Tomasetti M, et al. Exosomal transfer of miR-126 promotes the anti-tumour response in malignant mesothelioma: role of miR-126 in cancer-stroma communication. Cancer Lett. 2019;463:27–36. doi:10.1016/j.canlet.2019.08.001.
  • Kong R, Ma Y, Feng J, Li S, Zhang W, Jiang J, Zhang J, Qiao Z, Yang X, Zhou B. The crucial role of miR-126 on suppressing progression of esophageal cancer by targeting VEGF-A. Cell Mol Biol Lett. 2016;21(1):3. doi:10.1186/s11658-016-0004-2.
  • Tehler D, Hoyland-Kroghsbo NM, Lund AH. The miR-10 microRNA precursor family. RNA Biol. 2011;8(5):728–734. doi:10.4161/rna.8.5.16324.
  • Zhi Y, Xie X, Wang R, Wang B, Gu W, Ling Y, Dong W, Zhi F, Liu Y. Serum level of miR-10-5p as a prognostic biomarker for acute myeloid leukemia. Int J Hematol. 2015;102(3):296–303. doi:10.1007/s12185-015-1829-6.
  • Hui AB, Lenarduzzi M, Krushel T, Waldron L, Pintilie M, Shi W, Perez-Ordonez B, Jurisica I, O’Sullivan B, Waldron J, et al. Comprehensive MicroRNA profiling for head and neck squamous cell carcinomas. Clin Cancer Res. 2010;16(4):1129–1139. doi:10.1158/1078-0432.CCR-09-2166.
  • Hammou RA, Kasmi Y, Ennaji MM. A computational approach to the study of interactions between proteins and miR10-b, miR-335, and miR-21 involved in breast cancer. Contemp Oncol (Pozn). 2019;23(4):220–225. doi:10.5114/wo.2019.91544.
  • Tian Y, Luo A, Cai Y, Su Q, Ding F, Chen H, Liu Z. MicroRNA-10b promotes migration and invasion through KLF4 in human esophageal cancer cell lines. J Biol Chem. 2010;285(11):7986–7994. doi:10.1074/jbc.M109.062877.
  • Faraoni I, Antonetti FR, Cardone J, Bonmassar E. miR-155 gene: a typical multifunctional microRNA. Biochim Biophys Acta. 2009;1792(6):497–505. doi:10.1016/j.bbadis.2009.02.013.
  • Zanoaga O, Braicu C, Chiroi P, Andreea N, Hajjar NA, Margarit S, Korban SS, Berindan-Neagoe I. The role of miR-155 in nutrition: modulating cancer-associated inflammation. Nutrients. 2021;13(7):2245. doi:10.3390/nu13072245.
  • Wang J, Wu J. Role of miR-155 in breast cancer. Front Biosci (Landmark Ed). 2012;17(6):2350–2355. doi:10.2741/4056.
  • Mattiske S, Suetani RJ, Neilsen PM, Callen DF. The oncogenic role of miR-155 in breast cancer. Cancer Epidemiol Biomarkers Prev. 2012;21(8):1236–1243. doi:10.1158/1055-9965.EPI-12-0173.
  • Li S, Zhang T, Zhou X, Du Z, Chen F, Luo J, Liu Q. The tumor suppressor role of miR-155-5p in gastric cancer. Oncol Lett. 2018;16(2):2709–2714. doi:10.3892/ol.2018.8932.
  • Guo T, Wang XX, Fu H, Tang YC, Meng BQ, Chen CH. Early diagnostic role of PSA combined miR-155 detection in prostate cancer. Eur Rev Med Pharmacol Sci. 2018;22(6):1615–1621. doi:10.26355/eurrev_201803_14568.
  • Ovcharenko D, Kelnar K, Johnson C, Leng N, Brown D. Genome-scale microRNA and small interfering RNA screens identify small RNA modulators of TRAIL-induced apoptosis pathway. Cancer Res. 2007;67(22):10782–10788. doi:10.1158/0008-5472.CAN-07-1484.
  • Gironella M, Seux M, Xie MJ, Cano C, Tomasini R, Gommeaux J, Garcia S, Nowak J, Yeung ML, Jeang KT, et al. Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc Natl Acad Sci U S A. 2007;104(41):16170–16175. doi:10.1073/pnas.0703942104.
  • Ding H, Wang Y, Hu L, Xue S, Wang Y, Zhang L, Zhang Y, Qi H, Yu H, Aung LHH, et al. Combined detection of miR-21-5p, miR-30a-3p, miR-30a-5p, miR-155-5p, miR-216a and miR-217 for screening of early heart failure diseases. Biosci Rep. 2020;40(3):3. doi:10.1042/BSR20191653.
  • Stankovic A, Kolakovic A, Zivkovic M, Djuric T, Bundalo M, Koncar I, Davidovic L, Alavantic D. Angiotensin receptor type 1 polymorphism A1166C is associated with altered AT1R and miR-155 expression in carotid plaque tissue and development of hypoechoic carotid plaques. Atherosclerosis. 2016;248:132–139. doi:10.1016/j.atherosclerosis.2016.02.032.
  • Ceolotto G, Papparella I, Bortoluzzi A, Strapazzon G, Ragazzo F, Bratti P, Fabricio AS, Squarcina E, Gion M, Palatini P, et al. Interplay between miR-155, AT1R A1166C polymorphism, and AT1R expression in young untreated hypertensives. Am J Hypertens. 2011;24(2):241–246. doi:10.1038/ajh.2010.211.
  • He Y, Cai Y, Pai PM, Ren X, Xia Z. The causes and consequences of miR-503 dysregulation and its impact on cardiovascular disease and cancer. Front Pharmacol. 2021;12:629611. doi:10.3389/fphar.2021.629611.
  • Hirakawa T, Nasu K, Abe W, Aoyagi Y, Okamoto M, Kai K, Takebayashi K, Narahara H. miR-503, a microRNA epigenetically repressed in endometriosis, induces apoptosis and cell-cycle arrest and inhibits cell proliferation, angiogenesis, and contractility of human ovarian endometriotic stromal cells. Hum Reprod. 2016;31(11):2587–2597. doi:10.1093/humrep/dew217.
  • Zhou B, Ma R, Si W, Li S, Xu Y, Tu X, Wang Q. MicroRNA-503 targets FGF2 and VEGFA and inhibits tumor angiogenesis and growth. Cancer Lett. 2013;333(2):159–169. doi:10.1016/j.canlet.2013.01.028.
  • Xiao F, Zhang W, Chen L, Chen F, Xie H, Xing C, Yu X, Ding S, Chen K, Guo H, et al. MicroRNA-503 inhibits the G1/S transition by downregulating cyclin D3 and E2F3 in hepatocellular carcinoma. J Transl Med. 2013;11(1):195. doi:10.1186/1479-5876-11-195.
  • Zhang Y, Chen X, Lian H, Liu J, Zhou B, Han S, Peng B, Yin J, Liu W, He X. MicroRNA-503 acts as a tumor suppressor in glioblastoma for multiple antitumor effects by targeting IGF-1R. Oncol Rep. 2014;31(3):1445–1452. doi:10.3892/or.2013.2951.
  • Li C, Gao Y, Zhang K, Chen J, Han S, Feng B, Wang R, Chen L. Multiple roles of MicroRNA-100 in human cancer and its therapeutic potential. Cell Physiol Biochem. 2015;37(6):2143–2159. doi:10.1159/000438572.
  • Zheng YS, Zhang H, Zhang XJ, Feng DD, Luo XQ, Zeng CW, Lin KY, Zhou H, Qu LH, Zhang P, et al. MiR-100 regulates cell differentiation and survival by targeting RBSP3, a phosphatase-like tumor suppressor in acute myeloid leukemia. Oncogene. 2012;31(1):80–92. doi:10.1038/onc.2011.208.
  • Leite KR, Sousa-Canavez JM, Reis ST, Tomiyama AH, Camara-Lopes LH, Sanudo A, Antunes AA, Srougi M. Change in expression of miR-let7c, miR-100, and miR-218 from high grade localized prostate cancer to metastasis. Urol Oncol. 2011;29(3):265–269. doi:10.1016/j.urolonc.2009.02.002.
  • Ye Y, Li SL, Wang J. J. miR-100-5p downregulates mTOR to suppress the proliferation, migration, and invasion of prostate cancer cells. Front Oncol. 2020;10:578948. doi:10.3389/fonc.2020.578948.
  • Leite KR, Morais DR, Reis ST, Viana N, Moura C, Florez MG, Silva IA, Dip N, Srougi M. MicroRNA 100: a context dependent miRNA in prostate cancer. Clinics (Sao Paulo). 2013;68(6):797–802. doi:10.6061/clinics/2013(06)12.
  • Qiu YH, Wei YP, Shen NJ, Wang ZC, Kan T, Yu WL, Yi B, Zhang Y. J. miR-204 inhibits epithelial to mesenchymal transition by targeting slug in intrahepatic cholangiocarcinoma cells. Cell Physiol Biochem. 2013;32(5):1331–1341. doi:10.1159/000354531.
  • Wang M, Ren D, Guo W, Wang Z, Huang S, Du H, Song L, Peng X. Loss of miR-100 enhances migration, invasion, epithelial-mesenchymal transition and stemness properties in prostate cancer cells through targeting Argonaute 2. Int J Oncol. 2014;45(1):362–372. doi:10.3892/ijo.2014.2413.
  • Shimamura T, Imoto S, Shimada Y, Hosono Y, Niida A, Nagasaki M, Yamaguchi R, Takahashi T, Miyano S, Bernhard EJ. A novel network profiling analysis reveals system changes in epithelial-mesenchymal transition. PLoS One. 2011;6(6):e20804. doi:10.1371/journal.pone.0020804.
  • Li Z, Li X, Yu C, Wang M, Peng F, Xiao J, Tian R, Jiang J, Sun C. MicroRNA-100 regulates pancreatic cancer cells growth and sensitivity to chemotherapy through targeting FGFR3. Tumour Biol. 2014;35(12):11751–11759. doi:10.1007/s13277-014-2271-8.
  • Zhao W, Zhao SP, Zhao YH. MicroRNA-143/-145 in cardiovascular diseases. Biomed Res Int. 2015;2015:531740. doi:10.1155/2015/531740.
  • Elia L, Quintavalle M, Zhang J, Contu R, Cossu L, Latronico MV, Peterson KL, Indolfi C, Catalucci D, Chen J, et al. The knockout of miR-143 and −145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease. Cell Death Differ. 2009;16(12):1590–1598. doi:10.1038/cdd.2009.153.
  • Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN, Lee TH, Miano JM, Ivey KN, Srivastava D. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 2009;460(7256):705–710. doi:10.1038/nature08195.
  • Boettger T, Beetz N, Kostin S, Schneider J, Kruger M, Hein L, Braun T. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J Clin Invest. 2009;119(9):2634–2647. doi:10.1172/JCI38864.
  • Cheng Y, Liu X, Yang J, Lin Y, Xu DZ, Lu Q, Deitch EA, Huo Y, Delphin ES, Zhang C. MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circ Res. 2009;105(2):158–166. doi:10.1161/CIRCRESAHA.109.197517.
  • Li R, Yan G, Zhang Q, Jiang Y, Sun H, Hu Y, Sun J, Xu B. miR-145 inhibits isoproterenol-induced cardiomyocyte hypertrophy by targeting the expression and localization of GATA6. FEBS Lett. 2013;587(12):1754–1761. doi:10.1016/j.febslet.2013.04.018.
  • Blumensatt M, Greulich S, Herzfeld de Wiza D, Mueller H, Maxhera B, Rabelink MJ, Hoeben RC, Akhyari P, Al-Hasani H, Ruige JB, et al. Activin A impairs insulin action in cardiomyocytes via up-regulation of miR-143. Cardiovasc Res. 2013;100(2):201–210. doi:10.1093/cvr/cvt173.
  • Kontaraki JE, Marketou ME, Zacharis EA, Parthenakis FI, Vardas PE. Differential expression of vascular smooth muscle-modulating microRNAs in human peripheral blood mononuclear cells: novel targets in essential hypertension. J Hum Hypertens. 2014;28(8):510–516. doi:10.1038/jhh.2013.117.
  • D’Alessandra Y, Carena MC, Spazzafumo L, Martinelli F, Bassetti B, Devanna P, Rubino M, Marenzi G, Colombo GI, Achilli F, et al. Diagnostic potential of plasmatic MicroRNA signatures in stable and unstable angina. PLoS One. 2013;8(11):e80345. doi:10.1371/journal.pone.0080345.
  • Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, Weber M, Hamm CW, Roxe T, Muller-Ardogan M, et al. Circulating microRNAs in patients with coronary artery disease. Circ Res. 2010;107(5):677–684. doi:10.1161/CIRCRESAHA.109.215566.
  • Meder B, Keller A, Vogel B, Haas J, Sedaghat-Hamedani F, Kayvanpour E, Just S, Borries A, Rudloff J, Leidinger P, et al. MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction. Basic Res Cardiol. 2011;106(1):13–23. doi:10.1007/s00395-010-0123-2.
  • Ma X, Conklin DJ, Li F, Dai Z, Hua X, Li Y, Xu-Monette ZY, Young KH, Xiong W, Wysoczynski M, et al. The oncogenic microRNA miR-21 promotes regulated necrosis in mice. Nat Commun. 2015;6(1):7151. doi:10.1038/ncomms8151.
  • Zhao J, Zhang Y, Zhao G. Emerging role of microRNA-21 in colorectal cancer. Cancer Biomark. 2015;15(3):219–226. doi:10.3233/CBM-150468.
  • Feng YH, Tsao CJ. Emerging role of microRNA-21 in cancer. Biomed Rep. 2016;5(4):395–402. doi:10.3892/br.2016.747.
  • Sheedy FJ. Turning 21: induction of miR-21 as a key switch in the inflammatory response. Front Immunol. 2015;6:19. doi:10.3389/fimmu.2015.00019.
  • Zhou S, Sun Y, Zhao K, Gao Y, Cui J, Qi L, Huang L. miR21/PTEN pathway mediates the cardioprotection of geniposide against oxidized lowdensity lipoproteininduced endothelial injury via suppressing oxidative stress and inflammatory response. Int J Mol Med. 2020;45(5):1305–1316. doi:10.3892/ijmm.2020.4520.
  • Zheng Y, Xie J, Jiang F, Li Y, Chang G, Ma H. Inhibition of miR21 promotes cell apoptosis in oral squamous cell carcinoma by upregulating PTEN. Oncol Rep. 2018;40(5):2798–2805. doi:10.3892/or.2018.6663.
  • Wu H, Ng R, Chen X, Steer CJ, Song G. MicroRNA-21 is a potential link between non-alcoholic fatty liver disease and hepatocellular carcinoma via modulation of the HBP1-p53-Srebp1c pathway. Gut. 2016;65(11):1850–1860. doi:10.1136/gutjnl-2014-308430.
  • Bahreyni A, Rezaei M, Bahrami A, Khazaei M, Fiuji H, Ryzhikov M, Ferns GA, Avan A, Hassanian SM. Diagnostic, prognostic, and therapeutic potency of microRNA 21 in the pathogenesis of colon cancer, current status and prospective. J Cell Physiol. 2019;234(6):8075–8081. doi:10.1002/jcp.27580.
  • Hatley ME, Patrick DM, Garcia MR, Richardson JA, Bassel-Duby R, van Rooij E, Olson EN. Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. Cancer Cell. 2010;18(3):282–293. doi:10.1016/j.ccr.2010.08.013.
  • Suresh S, McCallum L, Lu W, Lazar N, Perbal B, Irvine AE. MicroRNAs 130a/b are regulated by BCR-ABL and downregulate expression of CCN3 in CML. J Cell Commun Signal. 2011;5(3):183–191. doi:10.1007/s12079-011-0139-x.
  • Zhang HD, Jiang LH, Sun DW, Li J, Ji ZL. The role of miR-130a in cancer. Breast Cancer. 2017;24(4):521–527. doi:10.1007/s12282-017-0776-x.
  • Yu XF, Wang J, N OU, Guo S, Sun H, Tong J, Chen T, Li J. The role of miR-130a-3p and SPOCK1 in tobacco exposed bronchial epithelial BEAS-2B transformed cells: comparison to A549 and H1299 lung cancer cell lines. J Toxicol Environ Health A. 2019;82(15):862–869. doi:10.1080/15287394.2019.1664479.
  • Wei H, Cui R, Bahr J, Zanesi N, Luo Z, Meng W, Liang G, Croce CM. miR-130a deregulates PTEN and stimulates tumor growth. Cancer Res. 2017;77(22):6168–6178. doi:10.1158/0008-5472.CAN-17-0530.
  • Wang Y, Gu J, Hu L, Kong L, Wang T, Di M, Li C, Gui S. miR-130a alleviates neuronal apoptosis and changes in expression of Bcl-2/Bax and caspase-3 in cerebral infarction rats through PTEN/PI3K/Akt signaling pathway. Exp Ther Med. 2020;19(3):2119–2126. doi:10.3892/etm.2020.8415.
  • Liu HL, Bao HG, Zheng CL, Teng C, Bai MH. MiR-130a regulating the biological function of colon cancer by targeting inhibition of PTEN. Eur Rev Med Pharmacol Sci. 2020;24(4):1786–1793. doi:10.26355/eurrev_202002_20356.
  • Yang L, Li N, Wang H, Jia X, Wang X, Luo J. Altered microRNA expression in cisplatin-resistant ovarian cancer cells and upregulation of miR-130a associated with MDR1/P-glycoprotein-mediated drug resistance. Oncol Rep. 2012;28(2):592–600. doi:10.3892/or.2012.1823.
  • Xu N, Shen C, Luo Y, Xia L, Xue F, Xia Q, Zhang J. Upregulated miR-130a increases drug resistance by regulating RUNX3 and Wnt signaling in cisplatin-treated HCC cell. Biochem Biophys Res Commun. 2012;425(2):468–472. doi:10.1016/j.bbrc.2012.07.127.
  • Eichelmann AK, Matuszcak C, Lindner K, Haier J, Hussey DJ, Hummel R. Complex role of miR-130a-3p and miR-148a-3p balance on drug resistance and tumor biology in esophageal squamous cell carcinoma. Sci Rep. 2018;8(1):17553. doi:10.1038/s41598-018-35799-1.
  • Zheng T, Shi Y, Zhang J, Peng J, Zhang X, Chen K, Chen Y, Liu L. MiR-130a exerts neuroprotective effects against ischemic stroke through PTEN/PI3K/AKT pathway. Biomed Pharmacother. 2019;117:109117. doi:10.1016/j.biopha.2019.109117.
  • Zhang CY, Ren XM, Li HB, Wei W, Wang KX, Li YM, Hu JL, Li X. Effect of miR-130a on neuronal injury in rats with intracranial hemorrhage through PTEN/PI3K/AKT signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23(11):4890–4897. doi:10.26355/eurrev_201906_18077.
  • Luo H, Chen B, Weng B, Tang X, Chen Y, Yang A, Chu D, Zeng X, Ran M. miR-130a promotes immature porcine Sertoli cell growth by activating SMAD5 through the TGF-beta-PI3K/AKT signaling pathway. FASEB J. 2020;34(11):15164–15179. doi:10.1096/fj.202001384R.
  • Pan Y, Wang R, Zhang F, Chen Y, Lv Q, Long G, Yang K. MicroRNA-130a inhibits cell proliferation, invasion and migration in human breast cancer by targeting the RAB5A. Int J Clin Exp Pathol. 2015;8:384–393.
  • Jiang H, Yu WW, Wang LL, Peng Y. miR-130a acts as a potential diagnostic biomarker and promotes gastric cancer migration, invasion and proliferation by targeting RUNX3. Oncol Rep. 2015;34(3):1153–1161. doi:10.3892/or.2015.4099.
  • Hager M, Pedersen CC, Larsen MT, Andersen MK, Hother C, Gronbaek K, Jarmer H, Borregaard N, Cowland JB. MicroRNA-130a-mediated down-regulation of Smad4 contributes to reduced sensitivity to TGF-beta1 stimulation in granulocytic precursors. Blood. 2011;118(25):6649–6659. doi:10.1182/blood-2011-03-339978.
  • Ding L, Ni J, Yang F, Huang L, Deng H, Wu Y, Ding X, Tang J. Promising therapeutic role of miR-27b in tumor. Tumour Biol. 2017;39(3):1010428317691657. doi:10.1177/1010428317691657.
  • Yao J, Deng B, Zheng L, Dou L, Guo Y, Guo K. miR-27b is upregulated in cervical carcinogenesis and promotes cell growth and invasion by regulating CDH11 and epithelial-mesenchymal transition. Oncol Rep. 2016;35(3):1645–1651. doi:10.3892/or.2015.4500.
  • Ye J, Wu X, Wu D, Wu P, Ni C, Zhang Z, Chen Z, Qiu F, Xu J, Huang J. miRNA-27b targets vascular endothelial growth factor C to inhibit tumor progression and angiogenesis in colorectal cancer. PLoS One. 2013;8(4):e60687. doi:10.1371/journal.pone.0060687.
  • Melo SA, Kalluri R. Angiogenesis is controlled by miR-27b associated with endothelial tip cells. Blood. 2012;119(11):2439–2440. doi:10.1182/blood-2012-01-403642.
  • Liu J, Sun F, Wang X, Bi Q. miR-27b promotes angiogenesis and skin repair in scalded rats through regulating VEGF-C expression. Lasers Med Sci. 2020;35(7):1577–1588. doi:10.1007/s10103-020-02991-7.
  • Veliceasa D, Biyashev D, Qin G, Misener S, Mackie AR, Kishore R, Volpert OV. Therapeutic manipulation of angiogenesis with miR-27b. Vasc Cell. 2015;7(1):6. doi:10.1186/s13221-015-0031-1.
  • Sun F, Bi Q, Wang X, Liu J. Down-regulation of mir-27b promotes angiogenesis and fibroblast activation through activating PI3K/AKT signaling pathway. Wound Repair Regen. 2020;28(1):39–48. doi:10.1111/wrr.12765.
  • Yang WH, Chang AC, Wang SW, Wang SJ, Chang YS, Chang TM, Hsu SK, Fong YC, Tang CH. Leptin promotes VEGF-C production and induces lymphangiogenesis by suppressing miR-27b in human chondrosarcoma cells. Sci Rep. 2016;6(1):28647. doi:10.1038/srep28647.
  • Xia M, Duan LJ, Lu BN, Pang YZ, Pang ZR. LncRNA AFAP1-AS1/miR-27b-3p/VEGF-C axis modulates stemness characteristics in cervical cancer cells. Chin Med J (Engl). 2021;134(17):2091–2101. doi:10.1097/CM9.0000000000001665.
  • Shen S, Sun Q, Liang Z, Cui X, Ren X, Chen H, Zhang X, Zhou Y. A prognostic model of triple-negative breast cancer based on miR-27b-3p and node status. PLoS One. 2014;9(6):e100664. doi:10.1371/journal.pone.0100664.
  • Liu Y, Cai Q, Bao PP, Su Y, Cai H, Wu J, Ye F, Guo X, Zheng W, Zheng Y, et al. Tumor tissue microRNA expression in association with triple-negative breast cancer outcomes. Breast Cancer Res Treat. 2015;152(1):183–191. doi:10.1007/s10549-015-3460-x.
  • Zhen YB, Guo XL, Xu B, Zhao HW, Xu CJ. Gene expression profiling analysis of the role of miR-22 in clear cell ovarian cancer. Neoplasma. 2016;63(6):856–864. doi:10.4149/neo_2016_604.
  • Wang B, Li D, Filkowski J, Rodriguez-Juarez R, Storozynsky Q, Malach M, Carpenter E, Kovalchuk O. A dual role of miR-22 modulated by RelA/p65 in resensitizing fulvestrant-resistant breast cancer cells to fulvestrant by targeting FOXP1 and HDAC4 and constitutive acetylation of p53 at Lys382. Oncogenesis. 2018;7(7):54. doi:10.1038/s41389-018-0063-5.
  • Krichevsky AM, Sonntag KC, Isacson O, Kosik KS. Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells. 2006;24(4):857–864. doi:10.1634/stemcells.2005-0441.
  • Judson RL, Babiarz JE, Venere M, Blelloch R. Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol. 2009;27(5):459–461. doi:10.1038/nbt.1535.
  • Gruber AJ, Grandy WA, Balwierz PJ, Dimitrova YA, Pachkov M, Ciaudo C, Nimwegen E, Zavolan M. Embryonic stem cell-specific microRNAs contribute to pluripotency by inhibiting regulators of multiple differentiation pathways. Nucleic Acids Res. 2014;42(14):9313–9326. doi:10.1093/nar/gku544.
  • Xu D, Takeshita F, Hino Y, Fukunaga S, Kudo Y, Tamaki A, Matsunaga J, Takahashi RU, Takata T, Shimamoto A, et al. miR-22 represses cancer progression by inducing cellular senescence. J Cell Biol. 2011;193(2):409–424. doi:10.1083/jcb.201010100.
  • Jiang H, Zhang G, Wu JH, Jiang CP. Diverse roles of miR-29 in cancer (review). Oncol Rep. 2014;31(4):1509–1516. doi:10.3892/or.2014.3036.
  • Muniyappa MK, Dowling P, Henry M, Meleady P, Doolan P, Gammell P, Clynes M, Barron N. MiRNA-29a regulates the expression of numerous proteins and reduces the invasiveness and proliferation of human carcinoma cell lines. Eur J Cancer. 2009;45(17):3104–3118. doi:10.1016/j.ejca.2009.09.014.
  • Wang Y, Zhang X, Li H, Yu J, Ren X. The role of miRNA-29 family in cancer. Eur J Cell Biol. 2013;92(3):123–128. doi:10.1016/j.ejcb.2012.11.004.
  • Mott JL, Kobayashi S, Bronk SF, Gores G. J. mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene. 2007;26(42):6133–6140. doi:10.1038/sj.onc.1210436.
  • Garzon R, Heaphy CE, Havelange V, Fabbri M, Volinia S, Tsao T, Zanesi N, Kornblau SM, Marcucci G, Calin GA, et al. MicroRNA 29b functions in acute myeloid leukemia. Blood. 2009;114(26):5331–5341. doi:10.1182/blood-2009-03-211938.
  • Gebeshuber CA, Zatloukal K, Martinez J. miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Rep. 2009;10(4):400–405. doi:10.1038/embor.2009.9.
  • Fan X, Zhou S, Zheng M, Deng X, Yi Y, Huang T. MiR-199a-3p enhances breast cancer cell sensitivity to cisplatin by downregulating TFAM (TFAM). Biomed Pharmacother. 2017;88:507–514. doi:10.1016/j.biopha.2017.01.058.
  • Pencheva N, Tran H, Buss C, Huh D, Drobnjak M, Busam K, Tavazoie SF. Convergent multi-miRNA targeting of ApoE drives LRP1/LRP8-dependent melanoma metastasis and angiogenesis. Cell. 2012;151(5):1068–1082. doi:10.1016/j.cell.2012.10.028.
  • Ye H, Pang L, Wu Q, Zhu Y, Guo C, Deng Y, Zheng X. A critical role of mir-199a in the cell biological behaviors of colorectal cancer. Diagn Pathol. 2015;10(1):65. doi:10.1186/s13000-015-0260-x.
  • Hu Y, Liu J, Jiang B, Chen J, Fu Z, Bai F, Jiang J, Tang Z. MiR-199a-5p loss up-regulated DDR1 aggravated colorectal cancer by activating epithelial-to-mesenchymal transition related signaling. Dig Dis Sci. 2014;59:2163–2172.
  • Byrnes KA, Phatak P, Mansour D, Xiao L, Zou T, Rao JN, Turner DJ, Wang JY, Donahue JM. Overexpression of miR-199a-5p decreases esophageal cancer cell proliferation through repression of mitogen-activated protein kinase kinase kinase-11 (MAP3K11). Oncotarget. 2016;7(8):8756–8770. doi:10.18632/oncotarget.6752.
  • Gherghiceanu M, Popescu LM. Cardiac telocytes - their junctions and functional implications. Cell Tissue Res. 2012;348(2):265–279. doi:10.1007/s00441-012-1333-8.
  • Xiao J, Wang F, Liu Z, Yang C. Telocytes in liver: electron microscopic and immunofluorescent evidence. J Cell Mol Med. 2013;17(12):1537–1542. doi:10.1111/jcmm.12195.
  • Popescu BO, Gherghiceanu M, Kostin S, Ceafalan L, Popescu LM. Telocytes in meninges and choroid plexus. Neurosci Lett. 2012;516(2):265–269. doi:10.1016/j.neulet.2012.04.006.
  • Luesma MJ, Gherghiceanu M, Popescu LM. Telocytes and stem cells in limbus and uvea of mouse eye. J Cell Mol Med. 2013;17(8):1016–1024. doi:10.1111/jcmm.12111.
  • Li L, Lin M, Li L, Wang R, Zhang C, Qi G, Xu M, Rong R, Zhu T. Renal telocytes contribute to the repair of ischemically injured renal tubules. J Cell Mol Med. 2014;18(6):1144–1156. doi:10.1111/jcmm.12274.
  • Popescu LM, Gherghiceanu M, Suciu LC, Manole CG, Hinescu ME. Telocytes and putative stem cells in the lungs: electron microscopy, electron tomography and laser scanning microscopy. Cell Tissue Res. 2011;345(3):391–403. doi:10.1007/s00441-011-1229-z.
  • Bojin FM, Gavriliuc OI, Cristea MI, Tanasie G, Tatu CS, Panaitescu C, Paunescu V. Telocytes within human skeletal muscle stem cell niche. J Cell Mol Med. 2011;15(10):2269–2272. doi:10.1111/j.1582-4934.2011.01386.x.
  • Bani D, Formigli L, Gherghiceanu M, Faussone-Pellegrini MS. Telocytes as supporting cells for myocardial tissue organization in developing and adult heart. J Cell Mol Med. 2010;14(10):2531–2538. doi:10.1111/j.1582-4934.2010.01119.x.
  • Popescu LM, Manole E, Serboiu CS, Manole CG, Suciu LC, Gherghiceanu M, Popescu BO. Identification of telocytes in skeletal muscle interstitium: implication for muscle regeneration. J Cell Mol Med. 2011;15:1379–1392.
  • Tang XL, Zhang FL, Jiang XJ, Yang XJ. Telocytes enhanced the proliferation, adhesion and motility of endometrial stromal cells as mediated by the ERK pathway in vitro. Am J Transl Res. 2019;11:572–585.
  • Gherghiceanu M, Popescu LM. Cardiomyocyte precursors and telocytes in epicardial stem cell niche: electron microscope images. J Cell Mol Med. 2010;14(4):871–877. doi:10.1111/j.1582-4934.2010.01060.x.
  • Zhao B, Liao Z, Chen S, Yuan Z, Yilin C, Lee KK, Qi X, Shen X, Zheng X, Quinn T, et al. Intramyocardial transplantation of cardiac telocytes decreases myocardial infarction and improves post-infarcted cardiac function in rats. J Cell Mol Med. 2014;18(5):780–789. doi:10.1111/jcmm.12259.
  • Zhao B, Chen S, Liu J, Yuan Z, Qi X, Qin J, Zheng X, Shen X, Yu Y, Qnin TJ, et al. Cardiac telocytes were decreased during myocardial infarction and their therapeutic effects for ischaemic heart in rat. J Cell Mol Med. 2013;17(1):123–133. doi:10.1111/j.1582-4934.2012.01655.x.
  • Manole CG, Cismasiu V, Gherghiceanu M, Popescu LM. Experimental acute myocardial infarction: telocytes involvement in neo-angiogenesis. J Cell Mol Med. 2011;15(11):2284–2296. doi:10.1111/j.1582-4934.2011.01449.x.
  • Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y, Hu G, Sun Y. New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med. 2015;13(1):45. doi:10.1186/s12916-015-0278-7.
  • Mou Y, Wang Y, Li J, Lu S, Duan C, Du Z, Yang G, Chen W, Zhao S, Zhou J, et al. Immunohistochemical characterization and functional identification of mammary gland telocytes in the self-assembly of reconstituted breast cancer tissue in vitro. J Cell Mol Med. 2013;17(1):65–75. doi:10.1111/j.1582-4934.2012.01646.x.
  • Aleksandrovych V, Gil K. Telocytes in the tumor microenvironment. Adv Exp Med Biol. 2021;1329:205–216.
  • Islam MS, Ciavattini A, Petraglia F, Castellucci M, Ciarmela P. Extracellular matrix in uterine leiomyoma pathogenesis: a potential target for future therapeutics. Hum Reprod Update. 2018;24(1):59–85. doi:10.1093/humupd/dmx032.
  • Mirancea N, Morosanu AM, Mirancea GV, Juravle FD, Manoiu VS. Infrastructure of the telocytes from tumor stroma in the skin basal and squamous cell carcinomas. Rom J Morphol Embryol. 2013;54:1025–1037.
  • Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci. 2012;125(Pt 23):5591–5596. doi:10.1242/jcs.116392.
  • Ratajczak MZ, Ratajczak D, Pedziwiatr D. Extracellular microvesicles (ExMVs) in cell to cell communication: a role of telocytes. Adv Exp Med Biol. 2016;913:41–49.
  • Diaz-Flores L, Gutierrez R, Gonzalez-Gomez M, Garcia MP, Diaz-Flores L Jr, Carrasco JL, Martin-Vasallo P. CD34+ stromal cells/telocytes as a source of cancer-associated fibroblasts (CAFs) in invasive lobular carcinoma of the breast. Int J Mol Sci. 2021;22(7):3686. doi:10.3390/ijms22073686.
  • Janas P, Kucybala I, Radon-Pokracka M, Huras H. Telocytes in the female reproductive system: an overview of up-to-date knowledge. Adv Clin Exp Med. 2018;27(4):559–565. doi:10.17219/acem/68845.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.