1,305
Views
3
CrossRef citations to date
0
Altmetric
Review

Trans-Compartmental Regulation of Tight Junction Barrier Function

, &
Article: 2133880 | Received 08 Aug 2022, Accepted 08 Sep 2022, Published online: 11 Oct 2022

References

  • González-Mariscal L, Betanzos A, Nava P, Jaramillo BE. Tight junction proteins. Prog Biophys Mol Biol. 2003;81(1):380–387. doi:10.1016/s0079-6107(02)00037-8
  • Günzel D, Fromm M. Claudins and other tight junction proteins. Compr Physiol. 2012;2:1819–1852.
  • Lu Z, Kim D, Fan J, Lu Q, Verbanac K, Ding L, Renegar R, Chen YH. A non-tight junction function of claudin-7-Interaction with integrin signaling in suppressing lung cancer cell proliferation and detachment. Mol Cancer. 2015;14:120. doi:10.1186/s12943-015-0387-0
  • Schulzke J, Fromm M. Tight junctions: molecular structure meets function. Ann N Y Acad Sci. 2009;1165:1–6. doi:10.1111/j.1749-6632.2009.04925.x
  • Otani T, Furuse M. Tight junction structure and function revisited. Trends Cell Biol. 2020;30(10):805–817. doi:10.1016/j.tcb.2020.08.004
  • Lu Z, Ding L, Lu Q, Chen YH. Claudins in intestines: distribution and functional significance in health and diseases. Tissue Barriers. 2013;1(3):e24978. doi:10.4161/tisb.24978
  • Buckley A, Turner JR. Cell biology of tight junction barrier regulation and mucosal disease. Cold Spring Harv Perspect Biol. 2018;10(1):a029314. doi:10.1101/cshperspect.a029314
  • Hartsock A, Nelson WJ. Competitive regulation of E-cadherin juxtamembrane domain degradation by p120-catenin binding and Hakai-mediated ubiquitination. PLoS One. 2012;7(e):e37476. doi:10.1371/journal.pone.0037476
  • Mège RM, Ishiyama N. Integration of cadherin adhesion and cytoskeleton at adherens junctions. Cold Spring Harb Perspect Bio. 2017;9(5):a028738. doi:10.1101/cshperspect.a028738
  • Tietz S, Engelharft B. Brain barriers: crosstalk between complex tight junctions and adherens junctions. J Cell Biol. 2015;209(4):493–506. doi:10.1083/jcb.201412147
  • Morita H, Katsuno T, Hoshimoto A, Hirano N, Saito Y, Connexin SY. 26-mediated gap junctional intercellular communication suppresses paracellular permeability of human intestinal epithelial cell monolayers. Exp Cell Res. 2004;298(1):1–8. doi:10.1016/j.yexcr.2004.03.046
  • Go M, Kojima T, Takano K, Murata M, Koizumi J, Kurose M, Kamekura R, Osanai M, Chiba H, Spray D, et al. Connexin 26 expression prevents down-regulation of barrier and fence functions of tight junctions by Na+/K+-ATPase inhibitor ouabain in human airway epithelial cell line Calu-3. Exp Cell Res. 2006;312(19):3847–3856. doi:10.1016/j.yexcr.2006.08.014
  • Kojima T, Murata M, Go M, Spray D, Sawada N. Connexins induce and maintain tight junctions in epithelial cells. J Membr Biol. 2007;217(1–3):13–19. doi:10.1007/s00232-007-9021-4
  • Ngezahayo A, Ruhe FA. Connexins in the development and physiology of stem cells. Tissue Barrier. 2021;9(4):1949242. doi:10.1080/21688370.2021.1949242
  • Boivin F, Schmidt-Ott K. Transcriptional mechanisms coordinating tight junction assembly during epithelial differentiation. Ann N Y Acad Sci. 2017;1397(1):80–99. doi:10.1111/nyas.13367
  • Ding L, Lu Z, Foreman O, Tatum R, Lu Q, Renegar R, Cao J, Chen YH. Inflammation and disruption of mucosal architecture in claudin-7-deficient mice. Gastroenterology. 2012;142(2):305–315. doi:10.1053/j.gastro.2011.10.025
  • Bhat A, Pope J, Smith J, Ahmad R, Chen X, Washington M, Beauchamp RD, Singh AB, Dhawan P. Claudin-7 expression induces mesenchymal to epithelial transformation (MET) to inhibit colon tumorigenesis. Oncogene. 2015;34(35):4570–4580. doi:10.1038/onc.2014.385
  • Kim D, Furuta G, Nguyen N, Inage E, Masterson J. Epithelial claudin proteins and their role in gastrointestinal diseases. J Pediatr Gastroenterol Nutr. 2019;68(5):611–614. doi:10.1097/MPG.0000000000002301
  • Rudraraju M, Narayanan S, Somanath P. Regulation of blood-retinal barrier cell-junctions in diabetic retinopathy. Parmacol Res. 2020;161:105115.
  • Giepmans B. Ijzendoorn. Epithelial cell-cell junctions and plasma membrane domains. Biochim Biophys Acta. 2009;1788(4):820–831. doi:10.1016/j.bbamem.2008.07.015
  • Wang D, Chadha G, Feygin A, Ivanov A. F-actin binding protein, anillin, regulates integrity of intercellular junctions of human epithelial cells. Cell Mol Life Sci. 2015;72(16):3185–3200. doi:10.1007/s00018-015-1890-6
  • Huxham J, Tabaries S, Afadin SP. (AF6) in cancer progression: a multidomain scaffold protein with complex and contradictory roles. Bioessays. 2021;43(1):e2000221. doi:10.1002/bies.202000221
  • Garcia M, Nelson W, Cell-Cell Junctions CN. Organize Structural and Signaling Networks. Cold Spring Harb Perspect Biol. 2018;10(4):a029181. doi:10.1101/cshperspect.a029181
  • Birukova A, Zebda N, Fu P, Poroyko V, Cokic I, Birukov K. Association between adherens junctions and tight junctions via Rap1 promotes barrier protective effects of oxidized phospholipids. J Cell Physiol. 2011;226(8):2052–2062. doi:10.1002/jcp.22543
  • McCrea PD, Gu D. The catenin family at a glance. J Cell Sci. 2010;123(Pt 5):637–642. doi:10.1242/jcs.039842
  • Lu Q. δ-Catenin dysregulation in cancer: interactions with E-cadherin and beyond. J Pathol. 2010;222(2):119–123. doi:10.1002/path.2755
  • Xiao K, Allison D, Buckley K, Kottke M, Vincent P, Faundez V, Kowalczyk A. Cellular levels of p120 catenin function as a set point for cadherin expression levels in microvascular endothelial cells. J Cell Biol. 2003;163(3):535–545. doi:10.1083/jcb.200306001
  • Kourtidis A, Ngok S, Anastasidis P. p120 catenin: an essential regulator of cadherin stability, adhesion-induced signaling, and cancer progression. Prog Mol Biol Transl Sci. 2013;116:409–432.
  • Hong JY, Oh IH, McCrea PD. Phosphorylation and isoform use in p120-catenin during development and tumorigenesis. Biochim Biophys Acta. 2016;1863(1):102–114. doi:10.1016/j.bbamcr.2015.10.008
  • Wang Y, Minshall RD, Schwartz DE, Hu G. Cyclic stretch induces alveolar barrier dysfunction via calpain-mediated degradation of p120-catenin. Am J Physiol Lung Cell Mol Physiol. 2011;301(2):L197–206. doi:10.1152/ajplung.00048.2011
  • Gu C, Liu M, Zhao T, Wang D, Wang Y. Protective role of p120-catenin in maintaining the integrity of adherens and tight junctions in ventilator-induced lung injury. Respir Res. 2015;16(1):58. doi:10.1186/s12931-015-0217-3
  • Bochkov V, Kadl A, Huber J, Gruber F, Binder B, Leitinger N. Protective role of phospholipid oxidation products in endotoxin-induced tissue damage. Nature. 2002;419(6902):77–81. doi:10.1038/nature01023
  • Birukov K, Bochkov V, Birukova A, Kawkitinarng K, Rios A, Leitner A, Verin A, Bokoch G, Leitinger N, Garcia J. Epoxycyclopentenone-containing oxidized phospholipids restore endothelial barrier function via Cdc42 and Rac. Circ Res. 2004;95(9):892–901. doi:10.1161/01.RES.0000147310.18962.06
  • Smalley-Freed W, Efimov A, Burnett P, Short S, Davis M, Gumucio D, Washington MK, Coffey R, Reynolds A. p120-catenin is essential for maintenance of barrier function and intestinal homeostasis in mice. J Clin Invest. 2010;120(6):1824–1835. doi:10.1172/JCI41414
  • Naser A, Guiler W, Lu Q, Chen YH. Nanoarchitecture and molecular interactions of epithelial cell junction proteins revealed by super-resolution microscopy. Ann N Y Acad Sci. 2022:1–13. doi:10.1111/nyas.14855
  • Nunes F, Lopez L, Lin H, Davies C, Azevedo R, Gow A, Kachar B. Distinct subdomain organization and molecular composition of a tight junction with adherens junction features. J Cell Sci. 2006;110(Pt 23):4819–4827. doi:10.1242/jcs.03233
  • Rubsam M, Mertz A, Kubo A, Marg S, Jungst C, Goranci-Buzhala G, Schauss A, Horsley V, Dufresne E, Moser M, et al. E-cadherin integrates mechanotransduction and EGFR signaling to control junctional tissue polarization and tight junction positioning. Nat Commun. 2017;8(1):1250. doi:10.1038/s41467-017-01170-7
  • Tunggal JA, Helfrich I, Schmitz A, Schwarz H, Gunzel D, Fromm M, Kemler R, Krieg T, Niessen C. E-cadherin is essential for in vivo epidermal barrier function by regulating tight junctions. EMBO J. 2005;24(6):1146–1156. doi:10.1038/sj.emboj.7600605
  • Tinkle CL, Pasolli HM, Stokes N, Fuchs E. New insights into cadherin function in epidermal sheet formation and maintenance of tissue integrity. Proc Natl Acad Sci U S A. 2008;105(4):15405–15410. doi:10.1073/pnas.0807374105
  • Nita-Lazar M, Rebustini I, Walker J, Hypoglycosylated KM. E-cadherin promotes the assembly of tight junctions through the recruitment of PP2A to adherens junctions. Exp Cell Res. 2010;316(11):1871–1884. doi:10.1016/j.yexcr.2010.02.008
  • Chen YH, Lu Q, Schneeberger E, Goodenough D. Restoration of tight junction structure and barrier function by down-regulation of the mitogen-activated protein kinase pathway in Ras-transformed Madin-Darby canine kidney cells. Mol Biol Cell. 2000;11(3):849–862. doi:10.1091/mbc.11.3.849
  • Severson EA, Kwon M, Hilgarth RS, Parkos CA, Nursat A. Glycogen Synthase Kinase 3 (GSK-3) influences epithelial barrier function by regulating occludin, claudin-1 and E-cadherin expression. Biochem Biophys Res Commun. 2010;397(3):592–597. doi:10.1016/j.bbrc.2010.05.164
  • Gerhardt H, Wilburg H, Redies C. N-cadherin mediates pericytic-endothelial interaction during brain angiogenesis in the chicken. Dev Dyn. 2000;218:472–479.
  • Luo Y, Radice G. N-cadherin acts upstream of VE-cadherin in controlling vascular morphogenesis. J Cell Biol. 2005;169(1):29–34. doi:10.1083/jcb.200411127
  • Williams M, Lowrie M, Bennett J, Firth J, Clark P. Cadherin-10 is a novel blood-brain barrier adhesion molecule in human and mouse. Brain Res. 2005;1058(1–2):62–72. doi:10.1016/j.brainres.2005.07.078
  • Taddei A, Giampietro C, Conti A, Orsenigo F, Breviario F, Pirazzoli V, Potente M, Daly C, Dimmeler S, Dejana E. Endothelial adherens junctions control tight junctions by VE-cadherin mediated upregulation of claudin-5. Nat Cell Biol. 2008;10(8):923–934. doi:10.1038/ncb1752
  • Liebner S, Corada M, Bangsow T, Babbage J, Taddei A, Czupalla C, Reis M, Felici A, Wolburg H, Fruttiger M, et al. Wnt/beta-catenin signaling controls development of the blood-brain barrier. J Cell Biol. 2008;183(3):409–417. doi:10.1083/jcb.200806024
  • Tam S, Richmond D, Kaminker J, Modrusan Z, Martin-McNulty B, Cao T, Weimer R, Carano R, van Bruggen N, Watts R. Death receptors DR6 and TROY regulate brain vascular development. Dev Cell. 2012;22(2):403–417. doi:10.1016/j.devcel.2011.11.018
  • Zhou Y, Nathans J. Gpr124 controls CNS angiogenesis and blood-brain barrier integrity by promoting ligand-specific canonical wnt signaling. Dev Cell. 2014;31(2):248–256. doi:10.1016/j.devcel.2014.08.018
  • Boye K, Geraldo L, Furtado J, Pibouin-Fragner L, Poulet M, Kim D, Nelson B, Xu Y, Jacob L, Naissa N, et al. Endothelial Unc5B controls blood-brain barrier integrity. Nat Commun. 2022;13(1):1169. doi:10.1038/s41467-022-28785-9
  • Kim W, Kwon Y, Jang M, Park M, Kim J, Cho S, Jang D, Lee WB, Jung S, Choi H, et al. β-catenin activation down-regulates cell-cell junction-related genes and induces epithelial-to-mesenchymal-transition in colorectal cancers. Sci Rep. 2019;9(1):18440. doi:10.1038/s41598-019-54890-9
  • Huang J, Li J, Qu Y, Zhang J, Zhang L, Chen X, Liu B, Zhu Z. The expression of claudin-1 correlates with β-catenin and is a prognostic factor of poor outcome in gastric cancer. Int J Oncol. 2014;44(4):1293–1301. doi:10.3892/ijo.2014.2298
  • Alvarez J, Dodelet-Devillers A, Kebir H, Ifergan I, Fabre P, Terouz S, Sabbagh M, Wosik K, Bourbonniere L, Bernard M, et al. The Hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science. 2011;334(6063):1727–1731. doi:10.1126/science.1206936
  • Li S, Zhou J, Zhang L, Li J, Yu J, Ning K, Qu Y, He H, Chen Y, Reinach P, et al. Ectodysplasin A regulates epithelial barrier function through sonic hedgehog signaling pathway. J Cell Mol Med. 2018;22(1):230–240. doi:10.1111/jcmm.13311
  • Liu S, Chang L, Wei C. The sonic hedgehog pathway mediates Tongxinluo capsule-induced protection against blood-brain barrier disruption after ischaemic stroke in mice. Basic Clin Pharmacol Toxicol. 2019;124(6):660–669. doi:10.1111/bcpt.13186
  • Cho Y, Haraguchi D, Shigetomi K, Matsuzawa K, Uchida S, Ikenouchi J. Tricellulin secures the epithelial barrier at tricellular junctions by interacting with actomyosin. J Cell Biol. 2022;221(4):e202009037. doi:10.1083/jcb.202009037
  • van den Goor L, Miller A. Closing the gap: tricellulin/alpha-catenin interaction maintains epithelial integrity at vertices. J Cell Biol. 2022;221(4):e202202009. doi:10.1083/jcb.202202009
  • Higashi T, Chiba H. Molecular organization, regulation and function of tricellular junctions. Biochim Biophys Acta Biomembr. 2020;1862(2):183143. doi:10.1016/j.bbamem.2019.183143
  • Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S. Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol. 2005;171(6):939–945. doi:10.1083/jcb.200510043
  • Nagasawa K, Chiba H, Fujita H, Kojima T, Saito T, Endo T, Sawada N. Possible involvement of gap junctions in the barrier function of tight junctions of brain and lung endothelial cells. J Cell Physiol. 2006;208(1):123–132. doi:10.1002/jcp.20647
  • Nielsen M, Axelsen L, Sorgen P, Verma V, Delmar M, Holstein-Rathlou N. Gap junctions. Compr Physiol. 2012;2:1981–2035.
  • Farquhar M, Palade G. Junctional complexes in various epithelia. J Cell Biol. 1963;17(2):375–412. doi:10.1083/jcb.17.2.375
  • Johnson A, Roach J, Hu A, Stamatovic S, Zochowski M, Keep R, Connexin AA. 43 gap junctions contribute to brain endothelial barrier hyperpermeability in familial cerebral cavernous malformations type III by modulating tight junction structure. FASEB J. 2018;32(5):2615–2629. doi:10.1096/fj.201700699R
  • Kojima T, Spray D, Kokai Y, Chiba J, Mochizuki Y, Sawada N. Cx32 formation and/or Cx32-mediated intercellular communication induces expression and formation of tight junctions in hepatocytic cell line. Exp Cell Res. 2002;276(1):40–51. doi:10.1006/excr.2002.5511
  • Murata M, Kokima T, Yamamoto T, Go M, Takano K, Chiba H, Tokino T, Sawada N. Tight junction protein MAGI-1 is up-regulated by transfection with connexin 32 in an immortalized mouse hepatic cell line: cDNA microarray analysis. Cell Tissue Res. 2005;319(2):341–347. doi:10.1007/s00441-004-1017-0
  • Daruich A, Matet A, Moulin A, Kowalczuk L, Nicolas M, Sellam A, Rothschild PR, Omri S, Gelize E, Jonet L, et al. Mechanisms of macular edema: beyond the surface. Prog Retin Eye Res. 2018;63:20–68. doi:10.1016/j.preteyeres.2017.10.006
  • Cunha-Vas J, Bernardes R, Lobo C. Blood-retinal barrier. Eur J Ophthalmol. 2011;21(Suppl 6):S3–9. doi:10.5301/EJO.2010.6049
  • Argaw A, Gurfein B, Zhang Y, Zameer A, John G. VEGF-mediated disruption of endothelial CLN-5 promotes blood-brain barrier breakdown. Proc Natl Acad Sci USA. 2009;106(6):1977–1982. doi:10.1073/pnas.0808698106
  • Paffenholz R, Kuhn C, Grund C, Stehr S, Franke W. The arm-repeat protein NPRAP (neurojungin) is a constituent of the plaques of the outer limiting zone in the retina, defining a novel type of adhering junction. Exp Cell Res. 1999;250(2):452–464. doi:10.1006/excr.1999.4534