65
Views
0
CrossRef citations to date
0
Altmetric
Review

Submandibular gland epithelial development and the importance of junctions

, &
Article: 2161255 | Received 03 Jul 2022, Accepted 18 Dec 2022, Published online: 28 Dec 2022

References

  • Mortazavi H, Baharvand M, Movahhedian A, Mohammadi M, Khodadoustan A. Xerostomia due to systemic disease: a review of 20 conditions and mechanisms. Ann Med Health Sci Res. 2014;4(4):299–311. doi:10.4103/2141-9248.139284.
  • Togni L, Mascitti M, Santarelli A, Contaldo M, Romano A, Serpico R, Rubini C. Unusual conditions impairing saliva secretion: developmental anomalies of salivary glands. Front Physiol. 2019;10:855. doi:10.3389/fphys.2019.00855.
  • Yan Z, Ding N, Liu X, Hua H. Congenital agenesis of all major salivary glands and absence of unilateral lacrimal puncta: a case report and review of the literature. Acta Otolaryngol. 2012;132(6):671–675. doi:10.3109/00016489.2011.648273.
  • Aure MH, Konieczny SF, Ovitt CE. Salivary gland homeostasis is maintained through acinar cell self-duplication. Dev Cell. 2015;33(2):231–237. doi:10.1016/j.devcel.2015.02.013.
  • Tucker AS. Salivary gland development. Semin Cell Dev Biol. 2007;18(2):503–544. doi:10.1016/j.semcdb.2007.01.006.
  • Amano O, Mizobe K, Bando Y, Sakiyama K. Anatomy and histology of rodent and human major salivary glands: -overview of the Japan salivary gland society-sponsored workshop. Acta Histochem Cytochem. 2012;45(5):241–250. doi:10.1267/ahc.12013.
  • Proctor GB, Carpenter GH. Regulation of salivary gland function by autonomic nerves. Auton Neurosci. 2007;133(1):3–18. doi:10.1016/j.autneu.2006.10.006.
  • Kikuchi K, Kawedia J, Menon AG, Hand AR. The structure of tight junctions in mouse submandibular gland. Anat Rec (Hoboken). 2010;293(1):141–149. doi:10.1002/ar.21029.
  • Simson JA, Bank HL. Freeze-fracture and lead ion tracer evidence for a paracellular fluid secretory pathway in rat parotid glands. Anat Rec. 1984;208(1):69–80. doi:10.1002/ar.1092080109.
  • Krane CM, Melvin JE, Nguyen HV, Richardson L, Towne JE, Doetschman T, Menon AG. Salivary acinar cells from aquaporin 5-deficient mice have decreased membrane water permeability and altered cell volume regulation. J Biol Chem. 2001;276(26):23413–23420. doi:10.1074/jbc.M008760200.
  • Kawedia JD, Nieman ML, Boivin GP, Melvin JE, Kikuchi K, Hand AR, Lorenz JN, Menon AG. Interaction between transcellular and paracellular water transport pathways through Aquaporin 5 and the tight junction complex. Proc Natl Acad Sci U S A. 2007;104(9):3621–3626. doi:10.1073/pnas.0608384104.
  • Garcia MA, Nelson WJ, Chavez N. Cell-Cell junctions organize structural and signaling networks. Cold Spring Harb Perspect Biol. 2018;10(4):a029181. doi:10.1101/cshperspect.a029181.
  • Ewert P, Aguilera S, Alliende C, Kwon YJ, Albornoz A, Molina C, Urzúa U, Quest AFG, Olea N, Pérez P, et al. Disruption of tight junction structure in salivary glands from Sjogren’s syndrome patients is linked to proinflammatory cytokine exposure. Arthritis Rheum. 2010;62(5):1280–1289. doi:10.1002/art.27362.
  • Mellas RE, Leigh NJ, Nelson JW, McCall AD, Baker OJ. Zonula occludens-1, occludin and E-cadherin expression and organization in salivary glands with Sjogren’s syndrome. J Histochem Cytochem. 2015;63(1):45–56. doi:10.1369/0022155414555145.
  • Mei M, Xiang RL, Cong X, Zhang Y, Li J, Yi X, Park K, Han J-Y, Wu -L-L, Yu G-Y, et al. Claudin-3 is required for modulation of paracellular permeability by TNF-alpha through ERK1/2/slug signaling axis in submandibular gland. Cell Signal. 2015;27(10):1915–1927. doi:10.1016/j.cellsig.2015.07.002.
  • Zhang LW, Cong X, Zhang Y, Wei T, Su YC, Serrao AC, Brito ART, Yu GY, Hua H, Wu LL, et al. Interleukin-17 impairs salivary tight junction integrity in sjogren’s syndrome. J Dent Res. 2016;95(7):784–792. doi:10.1177/0022034516634647.
  • Al-Sadi R, Khatib K, Guo S, Ye D, Youssef M, Ma T. Occludin regulates macromolecule flux across the intestinal epithelial tight junction barrier. Am J Physiol Gastrointest Liver Physiol. 2011;300(6):G1054–64. doi:10.1152/ajpgi.00055.2011.
  • Saitou M, Furuse M, Sasaki H, Schulzke JD, Fromm M, Takano H, Noda T, Tsukita S. Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell. 2000;11(12):4131–4142. doi:10.1091/mbc.11.12.4131.
  • Gumbiner BM. Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol. 2005;6(8):622–634. doi:10.1038/nrm1699.
  • Takeichi M. Dynamic contacts: rearranging adherens junctions to drive epithelial remodelling. Nat Rev Mol Cell Biol. 2014;15(6):397–410. doi:10.1038/nrm3802.
  • Menko AS, Zhang L, Schiano F, Kreidberg JA, Kukuruzinska MA. Regulation of cadherin junctions during mouse submandibular gland development. Dev Dyn. 2002;224(3):321–333. doi:10.1002/dvdy.10111.
  • Wong WY, Pier M, Limesand KH. Persistent disruption of lateral junctional complexes and actin cytoskeleton in parotid salivary glands following radiation treatment. Am J Physiol Regul Integr Comp Physiol. 2018;315(4):R656–R67. doi:10.1152/ajpregu.00388.2017.
  • Johnson JL, Najor NA, Green KJ. Desmosomes: regulators of cellular signaling and adhesion in epidermal health and disease. Cold Spring Harb Perspect Med. 2014;4(11):a015297. doi:10.1101/cshperspect.a015297.
  • Walko G, Castanon MJ, Wiche G. Molecular architecture and function of the hemidesmosome. Cell Tissue Res. 2015;360(2):363–378. doi:10.1007/s00441-014-2061-z.
  • Gonzalez S, Aguilera S, Alliende C, Urzua U, Quest AF, Herrera L, Molina C, Hermoso M, Ewert P, Brito M, et al. Alterations in type I hemidesmosome components suggestive of epigenetic control in the salivary glands of patients with Sjögren’s syndrome. Arthritis Rheum. 2011;63(4):1106–1115. doi:10.1002/art.30212.
  • Molina C, Alliende C, Aguilera S, Kwon YJ, Leyton L, Martinez B, Leyton C, Perez P Gonzalez M-J, et al. Basal lamina disorganisation of the acini and ducts of labial salivary glands from patients with Sjogren’s syndrome: association with mononuclear cell infiltration. Ann Rheum Dis. 2006;65(2):178–183. doi:10.1136/ard.2004.033837.
  • Francis R, Xu X, Park H, Wei CJ, Chang S, Chatterjee B, Lo C. Connexin43 modulates cell polarity and directional cell migration by regulating microtubule dynamics. PLoS One. 2011;6(10):e26379. doi:10.1371/journal.pone.0026379.
  • Goodenough DA, Paul DL. Gap junctions. Cold Spring Harb Perspect Biol. 2009;1(1):a002576. doi:10.1101/cshperspect.a002576.
  • Jaskoll T, Zhou YM, Chai Y, Makarenkova HP, Collinson JM, West JD, Hajihosseini MK, Lee J, Melnick M. Embryonic Submandibular Gland Morphogenesis: stage-Specific Protein Localization of FGFs, BMPs, Pax6 and Pax9 in Normal Mice and Abnormal SMG Phenotypes in FgfR2-IIIc+/Δ, BMP7–/– and Pax6–/–Mice. Cells Tissues Organs. 2002;170(2–3):83–98. doi:10.1159/000046183.
  • Patel VN, Hoffman MP. Salivary gland development: a template for regeneration. Semin Cell Dev Biol. 2014;25-26:52–60. doi:10.1016/j.semcdb.2013.12.001.
  • Patel VN, Rebustini IT, Hoffman MP. Salivary gland branching morphogenesis. Differentiation. 2006;74(7):349–364. doi:10.1111/j.1432-0436.2006.00088.x.
  • Hsu JC, Yamada KM. Salivary gland branching morphogenesis–recent progress and future opportunities. Int J Oral Sci. 2010;2(3):117–126. doi:10.4248/IJOS10042.
  • Knosp WM, Knox SM, Hoffman MP. Salivary gland organogenesis. Wiley Interdiscip Rev Dev Biol. 2012;1(1):69–82. doi:10.1002/wdev.4.
  • Larsen HS, Aure MH, Peters SB, Larsen M, Messelt EB, Kanli Galtung H. Localization of AQP5 during development of the mouse submandibular salivary gland. J Mol Histol. 2011;42(1):71–81. doi:10.1007/s10735-010-9308-0.
  • Li J, Economou AD, Vacca B, Green JBA. Epithelial invagination by a vertical telescoping cell movement in mammalian salivary glands and teeth. Nat Commun. 2020;11(1):2366. doi:10.1038/s41467-020-16247-z.
  • Bergert M, Erzberger A, Desai RA, Aspalter IM, Oates AC, Charras G, Salbreux G, Paluch EK. Force transmission during adhesion-independent migration. Nat Cell Biol. 2015;17(4):524–529. doi:10.1038/ncb3134.
  • Pearl EJ, Li J, Green JB. Cellular systems for epithelial invagination. Philos Trans R Soc Lond B Biol Sci. 2017 1720;372(1720):20150526. doi:10.1098/rstb.2015.0526.
  • Kadoya Y, Yamashina S. Distribution of alpha 6 integrin subunit in developing mouse submandibular gland. J Histochem Cytochem. 1993;41(11):1707–1714. doi:10.1177/41.11.8409377.
  • Onodera T, Sakai T, Hsu JC, Matsumoto K, Chiorini JA, Yamada KM. Btbd7 regulates epithelial cell dynamics and branching morphogenesis. Science. 2010;329(5991):562–565. doi:10.1126/science.1191880.
  • Nakanishi Y, Sugiura F, Kishi J, Hayakawa T. Collagenase inhibitor stimulates cleft formation during early morphogenesis of mouse salivary gland. Dev Biol. 1986;113(1):201–206. doi:10.1016/0012-1606(86)90122-3.
  • Rebustini IT, Patel VN, Stewart JS, Layvey A, Georges-Labouesse E, Miner JH, Hoffman MP. Laminin α5 is necessary for submandibular gland epithelial morphogenesis and influences FGFR expression through β1 integrin signaling. Dev Biol. 2007;308(1):15–29. doi:10.1016/j.ydbio.2007.04.031.
  • Kadoya Y, Yamashina S. Cellular dynamics of epithelial clefting during branching morphogenesis of the mouse submandibular gland. Dev Dyn. 2010;239(6):1739–1747. doi:10.1002/dvdy.22312.
  • Daley WP, Kohn JM, Larsen M. A focal adhesion protein-based mechanochemical checkpoint regulates cleft progression during branching morphogenesis. Dev Dyn. 2011;240(9):2069–2083. doi:10.1002/dvdy.22714.
  • Larsen M, Wei C, Yamada KM. Cell and fibronectin dynamics during branching morphogenesis. J Cell Sci. 2006;119(16):3376–3384. doi:10.1242/jcs.03079.
  • Sakai T, Larsen M, Yamada KM. Fibronectin requirement in branching morphogenesis. Nature. 2003;423(6942):876–881. doi:10.1038/nature01712.
  • Walker JL, Menko AS, Khalil S, Rebustini I, Hoffman MP, Kreidberg JA, Kukuruzinska MA. Diverse roles of E-cadherin in the morphogenesis of the submandibular gland: insights into the formation of acinar and ductal structures. Dev Dyn. 2008;237(11):3128–3141. doi:10.1002/dvdy.21717.
  • Wei C, Larsen M, Hoffman MP, Yamada KM. Self-organization and branching morphogenesis of primary salivary epithelial cells. Tissue Eng. 2007;13(4):721–735. doi:10.1089/ten.2006.0123.
  • Hsu JC, Koo H, Harunaga JS, Matsumoto K, Doyle AD, Yamada KM. Region-specific epithelial cell dynamics during branching morphogenesis. Dev Dyn. 2013;242(9):1066–1077. doi:10.1002/dvdy.24000.
  • Nelson DA, Manhardt C, Kamath V, Sui Y, Santamaria-Pang A, Can A, Bello M, Corwin A, Dinn SR, Lazare M, et al. Quantitative single cell analysis of cell population dynamics during submandibular salivary gland development and differentiation. Biology Open. 2013;2(5):439–447. doi:10.1242/bio.20134309.
  • Wang S, Matsumoto K, Lish SR, Cartagena-Rivera AX, Yamada KM. Budding epithelial morphogenesis driven by cell-matrix versus cell-cell adhesion. Cell. 2021;184(14):3702–16 e30. doi:10.1016/j.cell.2021.05.015.
  • Hashizume A, Ueno T, Furuse M, Tsukita S, Nakanishi Y, Hieda Y. Expression patterns of claudin family of tight junction membrane proteins in developing mouse submandibular gland. Dev Dyn. 2004;231(2):425–431. doi:10.1002/dvdy.20142.
  • Baker OJ. Tight junctions in salivary epithelium. J Biomed Biotechnol. 2010;2010:278948. 2010. doi:10.1155/2010/278948.
  • Michikawa H, Fujita-Yoshigaki J, Sugiya H. Enhancement of barrier function by overexpression of claudin-4 in tight junctions of submandibular gland cells. Cell Tissue Res. 2008;334:255–264.
  • Daley WP, Gulfo KM, Sequeira SJ, Larsen M. Identification of a mechanochemical checkpoint and negative feedback loop regulating branching morphogenesis. Dev Biol. 2009;336(2):169–182. doi:10.1016/j.ydbio.2009.09.037.
  • Yamada A, Futagi M, Fukumoto E, Saito K, Yoshizaki K, Ishikawa M, Arakaki M, Hino R, Sugawara Y, Ishikawa M, et al. Connexin 43 is necessary for salivary gland branching morphogenesis and FGF10-induced ERK1/2 phosphorylation. J Biol Chem. 2016;291(2):904–912. doi:10.1074/jbc.M115.674663.
  • Shimono M, Yamamura T, Fumagalli G. Intercellular junctions in salivary glands: freeze-fracture and tracer studies of normal rat sublingual gland. J Ultrastruct Res. 1980;72(3):286–299. doi:10.1016/S0022-5320(80)90065-9.
  • Hieda Y, Iwai K, Morita T, Nakanishi Y. Mouse embryonic submandibular gland epithelium loses its tissue integrity during early branching morphogenesis. Dev Dyn. 1996;207(4):395–403. doi:10.1002/(SICI)1097-0177(199612)207:4<395::AID-AJA4>3.0.CO;2-C.
  • Hosseini ZF, Nelson DA, Moskwa N, Sfakis LM, Castracane J, Larsen M. FGF2-dependent mesenchyme and laminin-111 are niche factors in salivary gland organoids. J Cell Sci. 2018;131(4). doi:10.1242/jcs.208728.
  • Jaskoll T, Witcher D, Toreno L, Bringas P, Moon AM, Melnick M. FGF8 dose-dependent regulation of embryonic submandibular salivary gland morphogenesis. Dev Biol. 2004;268(2):457–469. doi:10.1016/j.ydbio.2004.01.004.
  • Ohuchi H, Hori Y, Yamasaki M, Harada H, Sekine K, Kato S, Itoh N. FGF10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development. Biochem Biophys Res Commun. 2000;277(3):643–649. doi:10.1006/bbrc.2000.3721.
  • Krejci P, Prochazkova J, Bryja V, Kozubik A, Wilcox WR. Molecular pathology of the fibroblast growth factor family. Hum Mutat. 2009;30(9):1245–1255. doi:10.1002/humu.21067.
  • Rohmann E, Brunner HG, Kayserili H, Uyguner O, Nurnberg G, Lew ED, Dobbie A, Eswarakumar VP, Uzumcu A, Ulubil-Emeroglu M, et al. Mutations in different components of FGF signaling in LADD syndrome. Nat Genet. 2006;38(4):178–183. doi:10.1038/ng1757.
  • De Moerlooze L, Spencer-Dene B, Revest JM, Hajihosseini M, Rosewell I, Dickson C. An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development. 2000;127(3):483–492. doi:10.1242/dev.127.3.483.
  • Hoffman MP, Kidder BL, Steinberg ZL, Lakhani S, Ho S, Kleinman HK, Larsen M. Gene expression profiles of mouse submandibular gland development: FGFR1 regulates branching morphogenesis in vitro through BMP- and FGF-dependent mechanisms. Development. 2002;129(24):5767–5778. doi:10.1242/dev.00172.
  • Patel N, Sharpe PT, Miletich I. Coordination of epithelial branching and salivary gland lumen formation by Wnt and FGF signals. Dev Biol. 2011;358(1):156–167. doi:10.1016/j.ydbio.2011.07.023.
  • Jaskoll T, Leo T, Witcher D, Ormestad M, Astorga J, Bringas P Jr., Carlsson P, Melnick M. Sonic hedgehog signaling plays an essential role during embryonic salivary gland epithelial branching morphogenesis. Dev Dyn. 2004;229(4):722–732. doi:10.1002/dvdy.10472.
  • Hashizume A, Hieda Y. Hedgehog peptide promotes cell polarization and lumen formation in developing mouse submandibular gland. Biochem Biophys Res Commun. 2006;339(3):996–1000. doi:10.1016/j.bbrc.2005.11.106.
  • Wang S, Sekiguchi R, Daley WP, Yamada KM. Patterned cell and matrix dynamics in branching morphogenesis. J Cell Biol. 2017;216(3):559–570. doi:10.1083/jcb.201610048.
  • Knosp WM, Knox SM, Lombaert IA, Haddox CL, Patel VN, Hoffman MP. Submandibular parasympathetic gangliogenesis requires sprouty-dependent Wnt signals from epithelial progenitors. Dev Cell. 2015;32(6):667–677. doi:10.1016/j.devcel.2015.01.023.
  • Matsumoto S, Kurimoto T, Taketo MM, Fujii S, Kikuchi A. The WNT/MYB pathway suppresses KIT expression to control the timing of salivary proacinar differentiation and duct formation. Development. 2016;143(13):2311–2324. doi:10.1242/dev.134486.
  • Nedvetsky PI, Emmerson E, Finley JK, Ettinger A, Cruz-Pacheco N, Prochazka J, Haddox C, Northrup E, Hodges C, Mostov K, et al. Parasympathetic innervation regulates tubulogenesis in the developing salivary gland. Dev Cell. 2014;30(4):449–462. doi:10.1016/j.devcel.2014.06.012.
  • Golden JP, DeMaro JA, Osborne PA, Milbrandt J, Johnson EM Jr. Expression of neurturin, GDNF, and GDNF family-receptor mRNA in the developing and mature mouse. Exp Neurol. 1999;158(2):504–528. doi:10.1006/exnr.1999.7127.
  • Knox SM, Lombaert IM, Reed X, Vitale-Cross L, Gutkind JS, Hoffman MP. Parasympathetic innervation maintains epithelial progenitor cells during salivary organogenesis. Science. 2010;329(5999):1645–1647. doi:10.1126/science.1192046.
  • Jaskoll T, Zhou YM, Trump G, Melnick M. Ectodysplasin receptor-mediated signaling is essential for embryonic submandibular salivary gland development. Anat Rec A Discov Mol Cell Evol Biol. 2003;271(2):322–331. doi:10.1002/ar.a.10045.
  • Melnick M, Phair RD, Lapidot SA, Jaskoll T. Salivary gland branching morphogenesis: a quantitative systems analysis of the Eda/Edar/NFκB paradigm. BMC Developmental Biology. 2009;9(1):32. doi:10.1186/1471-213X-9-32.
  • Cluzeau C, Hadj-Rabia S, Jambou M, Mansour S, Guigue P, Masmoudi S, Bal E, Chassaing N, Vincent M-C, Viot G, et al. Only four genes (EDA1, EDAR, EDARADD, and WNT10A) account for 90% of hypohidrotic/anhidrotic ectodermal dysplasia cases. Hum Mutat. 2011;32(1):70–72. doi:10.1002/humu.21384.
  • Li S, Zhou J, Zhang L, Li J, Yu J, Ning K, Qu Y, He H, Chen Y, Reinach PS, et al. Ectodysplasin A regulates epithelial barrier function through sonic hedgehog signalling pathway. J Cell Mol Med. 2018;22(1):230–240. doi:10.1111/jcmm.13311.
  • Kusakabe M, Sakakura T, Sano M, Nishizuka Y. A pituitary-salivary mixed gland induced by tissue recombination of embryonic pituitary epithelium and embryonic submandibular gland mesenchyme in mice. Dev Biol. 1985;110(2):382–391. doi:10.1016/0012-1606(85)90097-1.
  • Nogawa H, Mizuno T. Mesenchymal control over elongating and branching morphogenesis in salivary gland development. J Embryol Exp Morphol. 1981;66:209–221.
  • Tyler MS, Koch WE. In vitro development of palatal tissues from embryonic mice. II. Tissue isolation and recombination studies. J Embryol Exp Morphol. 1977;38:19–36.
  • Cutler LS. The dependent and independent relationships between cytodifferentiation and morphogenesis in developing salivary gland secretory cells. Anat Rec. 1980;196(3):341–347. doi:10.1002/ar.1091960310.
  • Cutler LS. Intercellular contacts at the epithelial-mesenchymal interface of the developing rat submandibular gland in vitro. J Embryol Exp Morphol. 1977;39:71–77.
  • Sakakura T, Nishizuka Y, Dawe CJ. Mesenchyme-dependent morphogenesis and epithelium-specific cytodifferentiation in mouse mammary gland. Science. 1976;194(4272):1439–1441. doi:10.1126/science.827022.
  • Cunha GR. Support of normal salivary gland morphogenesis by mesenchyme derived from accessory sexual glands of embryonic mice. Anat Rec. 1972;173(2):205–212. doi:10.1002/ar.1091730209.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.