1,844
Views
15
CrossRef citations to date
0
Altmetric
Articles

Ipomoea batatas (Convolvulaceae)-mediated synthesis of silver nanoparticles for controlling mosquito vectors of Aedes albopictus, Anopheles stephensi, and Culex quinquefasciatus (Diptera:Culicidae)

, , &
Pages 1568-1580 | Received 26 Aug 2016, Accepted 13 Nov 2016, Published online: 08 Dec 2016

References

  • Abbott WS. 1925. A method of computing the effectiveness of insecticides. J Ecol Entomol. 18:265–267.
  • Amer A, Mehlhorn H. 2006. Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res. 99:466–472.
  • Amin ZA, Bilgen M, Alshawsh MA, Ali HM, Hadi AH, Abdulla MA. 2012. Protective role of Phyllanthus niruri extract against thioacetamide induced liver cirrhosis in rat model. Evid Based Complement Alternat Med. Article ID 241583, 9 pages. doi: 10.1155/2012/241583
  • Amkamwar B, Damle C, Ahmad A, Sastry M. 2005. Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J Nanosci Nanotechnol. 5:1665–1671.
  • Arjunan NK, Murugan K, Rejeeth C, Madhiyazhagan P, Barnard DR. 2012. Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue. Vector Borne Zoonotic Dis. 12:262–268.
  • Bagavan A, Kamaraj C, Elango G, Abduz Zahir A, Abdul Rahuman A. 2009. Adulticidal and larvicidal efficacy of some medicinal plant extracts against tick, fluke and mosquitoes. Vet Parasitol. 166:286–292.
  • Benelli G. 2015b. Research in mosquito control: current challenges for a brighter future. Parasitol Res. 114:2801–2805.
  • Benelli G. 2016a. Plant-synthesized nanoparticles: an eco-friendly tool against mosquito vectors? In: Mehlhorn H, Ed. Nanoparticles in the Fight against Parasites, Volume 8 of the series? Parasitol Res Monographs. Switzerland: Springer International Publishing, pp. 155–172.
  • Benelli G. 2016b. Spread of Zika virus: the key role of mosquito vector control. Asia Pac J Trop Biomed. 6:468–471.
  • Benelli G, Bedini S, Cosci F, Toniolo C, Conti B, Nicoletti M. 2015a. Larvicidal and ovideterrent properties of neem oil and fractions against the filariasis vector Aedes albopictus (Diptera: Culicidae): a bioactivity survey across production sites. Parasitol Res. 114:227–236.
  • Benelli G, Mehlhorn H. 2016c. Review: declining malaria, rising of dengue and Zika virus: insights for mosquito vector control. Parasitol Res. 115:1747–1754.
  • Benelli G, Murugan K, Panneerselvam C, Madhiyazhagan P, Conti B, Nicoletti M. 2015c. Old ingredients for a new recipe? Neem cake, a low-cost botanical by-product in the fight against mosquito-borne diseases. Parasitol Res. 114:391–397.
  • Bernhard L, Bernhard P, Magnussen P. 2003. Management of patients with lymphoedema caused by filariasis in North-eastern Tanzania: alternative approaches. Physiotherapy. 89:743–749.
  • Chattopadhyay S, Chakraborty SP, Laha D, Baral R, Pramanik P, Roy S. 2012. Surface-modified cobalt oxide nanoparticles: new opportunities for anti-cancer drug development. Cancer Nanotechnol. 3:13–23.
  • Chattopadhyay S, Dash SK, Ghosh T, Das D, Pramanik P, Roy S. 2013a. Surface modification of cobalt oxide nanoparticles using phosphonomethyl iminodiacetic acid followed by folic acid: a biocompatible vehicle for targeted anticancer drug delivery. Cancer Nanotechnol. 4:103–116.
  • Conti B, Canale A, Bertoli A, Gozzini F, Pistelli L. 2010. Essential oil composition and larvicidal activity of six Mediterranean aromatic plants against the mosquito Aedes albopictus (Diptera: Culicidae). Parasitol Res. 107:1455–1462.
  • Dash SK, Ghosh T, Roy S, Chattopadhyay S, Das D. 2014. Zinc sulfide nanoparticles selectively induce cytotoxic and genotoxic effects on leukemic cells: involvement of reactive oxygen species and tumor necrosis factor alpha. J Appl Toxicol. 34:1130–1144.
  • Dhanasekaran D, Thangaraj R. 2013. Evaluation of larvicidal activity of biogenic nanoparticles against filariasis causing Culex mosquito vector. Asian Pacific J Trop Dis. 3:174–179.
  • Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Jiang W, et al. 2015. Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi. Parasitol Res. 114:1519–1529.
  • FAO. 1992. Nutrition and development: a global assessment. Proceedings of the International Conference on Nutrition; 1992 Dec 1–2; Rome, Italy.
  • Finney DJ. 1971. Probit Analysis. London: Cambridge University Press, pp. 68–78.
  • Gad L, George T. (Eds) 2009. The Sweet Potatoes. Springer Netherlands: Springer Science+ Business Media, pp. 391–425. doi:10.1007/978-1-4020-9475-0. Available from: http://zipcodezoo.com/index.php/Special:BookSources/978-1-4020-9475-0.
  • Gole A, Dash C, Ramachandran V, Mandale AB, Sainkar SR, Rao M, Sastry M. 2001. Pepsin-gold colloid conjugates: preparation, characterization and enzymatic activity. Langmuir. 17:1674–1679.
  • Govindarajan M, Kadaikunnan S, Alharbi NS, Benelli G. 2016. Single-step biological fabrication of colloidal silver nanoparticles using Hugonia mystax: larvicidal potential against Zika virus, dengue, and malaria vector mosquitoes. Artif Cells Nanomed Biotechnol. 9:1–9.
  • Hamsa TP, Kuttan G. 2011. Evaluation of the anti-inflammatory and anti-tumor effect of Ipomoea obscura (L) and its mode of action through the inhibition of proinflammatory cytokines, nitric oxide and COX-2. Inflammation. 34:171–183.
  • Hermes D, Dudek DN, Maria MD, Horta LP, Lima EN, de Fátima Â, et al. 2013. In vivo wound healing and antiulcer properties of white sweet potato (Ipomoea batatas). J Adv Res. 4:411–415.
  • Igwenyi IO, Offor CE, Ajah DA, Nwankwo OC, Ukaomah JI, Aja PM. 2011. Chemical compositions of Ipomea aquatica (green kangkong). Int J Pharm Bio Sci. 2:B593–B598.
  • Ijaola TO, Osunkiyesi AA, Taiwo AA, Oseni OA, LanreIyanda YA, Ajayi JO, et al. 2014. Antiiabetic effect of Ipomoea batatas in normal and alloxan-induced diabetic rats. J Appl Chem. 7:16–25.
  • Jabeen Q, Aslam N. 2013. Hypotensive, angiotensin converting enzyme (ACE) inhibitory and diuretic activities of the aqueous-methanol extract of Ipomoea reniformis. Iran J Pharm Res. 12:769–776.
  • Jayaseelan C, Abdul Rahuman A, Rajakumar G, Vishnu Kirthi A, Santhoshkumar T, Marimuthu S, et al. 2011. Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitol Res. 109:185–194.
  • Kager PA. 2002. Malaria control: constraints and opportunities. Trop Med Int Health. 7:1042–1046.
  • Kamaraj C, Bagavan A, Rahuman AA, Zahir AA, Elango G, Pandiyan G. 2009. Larvicidal potential of medicinal plant extracts against Anopheles subpictus Grassi and Culex tritaeniorhynchus Giles (Diptera: Culicidae). Parasitol Res. 104:1163–1171.
  • Kovendan K, Murugan K, Shanthakumar SP, Vincent S. 2012. Evaluation of larvicidal and pupicidal activity of Morinda citrifolia L. (Noni) (Family: Rubiaceae) against three mosquito vectors. Parasitol Res. 111:1481–1490.
  • Kumar A, Paul S, Kumari P, Somasundaram ST, Kathiresan K. 2014. Antibacterial and phytochemical assessment on various extracts of Ipomoea pescaprae (L.) R. Br through FTIR and GC-MS spectroscopic analysis. Asian J Pharm Clin Res. 7:134–138.
  • Kunjiappan S, Chowdhury R, Bhattacharjee C. 2014. A green chemistry approach for the synthesis and characterization of bioactive gold nanoparticles using Azolla microphylla methanol extract. Front Mater Sci. 8:123–135.
  • Lalrotluanga LN, Senthil-Kumar N, Gurusubramanian G. 2012. Insecticidal and repellent activity of Hiptage benghalensis L. Kruz (Malpighiaceae) against mosquito vectors. Parasitol Res. 111:1007–1017.
  • Lin RJ, Chen CY, Lo WL. 2008. Cytotoxic activity of Ipomoea cairica. Nat Prod Res. 9:747–753.
  • Logeswari P, Silambarasan S, Abraham J. 2013. Eco-friendly synthesis of silver nanoparticles from commercially available plant products and their antibacterial properties. Scientia Irancia F. 20:1049–1054.
  • Ma J, Zhang J, Xiong Z, Yong Y, Zhao XS. 2003. Preparation, characterization and antibacterial properties of silver-modified graphene oxide. J Mater Chem. 21:3350–3352.
  • Maillard M, Marston A, Hostettmann K. 1993. Search for molluscicidal and larvicidal agents from plants. In: Balandrin M, Ed. Human Medicinal Agents from Plants. Washington, DC: American Chemical Society, vol. 534, pp. 256–273.
  • Majumdar R, Bag BG, Maity N. 2013. Acacia nilotica (Babool) leaf extract mediated size-controlled rapid synthesis of gold nanoparticles and study of its catalytic activity. Int Nano Lett. 3:53.
  • Marcondes CB, Ximenes MF. 2015. Zika virus in Brazil and the danger of infestation by Aedes (Stegomyia) mosquitoes. Rev Soc Bras Med Trop. 49:4–10.
  • Marimuthu S, Rahuman AA, Rajakumar G, Santhosh kumar T, Kirthi AV, Jayaseelan C, et al. 2010. Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res. 108:1541–1549.
  • Minjas JN, Sarda RK. 1986. Laboratory observations on the toxicity of Swartzia madagascariensis (Leguminosae) extract to mosquito larvae. Trans R Soc Trop Med Hyg. 80:460–461.
  • Mishra A, Kaushik NK, Sardar M, Sahal D. 2013. Evaluation of antiplasmodial activity of green synthesized silver nanoparticles. Colloids Surf B: Biointerf. 111:713–718.
  • Mukhtar M, Herrel N, Amerasinghe FP, Ensink J, Vander Hoek W, Konradsen F. 2003. Role of wastewater irrigation in mosquito breeding in south Punjab, Pakistan. Southeast Asian J Trop Med Public Health. 34:72–80.
  • Murugan K, Aruna P, Panneerselvam C, Madhiyazhagan P, Paulpandi M, Subramaniam J, et al. 2016. Fighting arboviral diseases: low toxicity on mammalian cells, dengue growth inhibition (in vitro) and mosquitocidal activity of Centroceras clavulatum-synthesized silver nanoparticles. Parasitol Res. 115:651–662.
  • Murugan K, Benelli G, Ayyappan S, Dinesh D, Panneerselvam C, Nicoletti M, et al. 2015a. Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasit Res. 114:2243–2253.
  • Murugan K, Eugine Venus JS, Panneerselvam C, Bedini S, Conti B, Nicoletti M, et al. 2015b. Biosynthesis, mosquitocidal and antibacterial properties of Toddalia asiatica-synthesized silver nanoparticles: do they impact predation of guppy Poecilia reticulata against the filariasis mosquito Culex quinquefasciatus. Environ Sci Pollut Res. 22:17053–17064.
  • Murugan K, Jeyabalan D, Senthilkumar N, Babu R, Sivaramakrishnan S. 1996. Antipupational effect of neem seed kernel extract against mosquito larvae of Anopheles stephensi (Liston). J Ent Res. 20:137–139.
  • Muthukumaran U, Govindarajan M, Rajeswary M. 2015. Mosquito larvicidal potential of silver nanoparticles synthesized using Chomelia asiatica (Rubiaceae) against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res. 114:989–999.
  • Nagamine R, Ueno S, Tsubata M, Yamaguchi K, Takagaki K, Hira T, et al. 2014. Dietary sweet potato (Ipomoea batatas L.) leaf extact attenuates hyperglycaemia by enhancing the secretion of glucagon-like peptide-1 (GLP-1). Food Funct. 5:2309–2316.
  • Ouda SM. 2014. Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternate and Botrytis cinerea. Res J Microbiol. 9:34–42.
  • Panda V, Sonkamble M. 2012. Phytochemical constituents and pharmacological activites of Ipomoea batatas I. (Lam) – a review. Int J Res Phytochem Pharmacol. 2:25–34.
  • Parashar UK, Saxenaa PS, Srivastava A. 2009. Bioinspired synthesis of silver nanoparticles. Dig J Nanomater Bios. 4:159–166.
  • Pàska C, Innocenti G, Kunvári M, László M, Szilágyi L. 1999. Lignan production by Ipomoea cairica callus cultures. Phytochemistry. 52:879–883.
  • Patil SV, Borase HP, Patil CD, Salunke BK. 2012. Biosynthesis of silver nanoparticles using latex from few Euphorbian plants and their antimicrobial potential. Appl Biochem Biotechnol. 167:776–790.
  • Pavela R, Benelli G. 2016. Ethnobotanical knowledge on botanical repellents employed in the African region against mosquito vectors – a review. Exp Parasitol. 167C:103–108.
  • Peng Z, Yang J, Wang H, Simons FER. 1999. Production and characterization of monoclonal antibodies to two new mosquito Aedes aegypti salivary proteins. Insect Biochem Mol Biol. 29:909–914.
  • Rahman SJ, Sharma SK, Rajagopal R. 1989. Manual on Entomological Surveillance of Vector Borne Diseases. New Delhi : NICD.
  • Rahuman AA, Gopalakrishnan G, Venkatesan P, Geetha K. 2007. Larvicidal activity of some Euphorbiaceae plant extracts against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res. 102:867–873.
  • Rajakumar G, Rahuman A. 2011. Larvicidal activity of synthesized silver nanoparticle using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop. 118:196–203.
  • Rajan R, Chandran K, Harper SL, Yun SI, Kalaichelvan PT. 2015. Plant extract synthesized nanoparticles: an ongoing source of novel biocompatible materials. Ind Crop Prod. 70:356–373.
  • Rajesh WR, Jaya RL, Niranjan SK, Vijay DM, Sahelebrao BK. 2009. Phyto synthesis of silver nanoparticles using Gliricidia sepium (Jaeq). Curr Nanosci. 5:117–122.
  • Rao CNR, Biswas K. 2009. Characterization of nanomaterials by physical methods. Annu Rev Anal Chem. 2:435–462.
  • Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C, et al. 2011. synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res. 108:693–702.
  • Selvaraj Mohana Roopana R, Madhumithaa G, Abdul Rahuman A, Kamaraj C, Bharathi A, Surendra TV. 2013. Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. Ind Crops Product. 43:631–635.
  • Sharma VK, Ria AY, Lin Y. 2009. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci. 145:83–96.
  • Soni N, Prakash S. 2014. Green nanoparticles for mosquito control. ScientificWorldJournal. Article ID 496362, 6 pages. Available from: http://dx.doi.org/10.1155/2014/496362.
  • Srinivasan B, Muthukumaraswamy S, Mohanraj J. 2014. Biosynthesis of silver nanoparticles from mangrove plant (Avicennia marina) extract and their potential mosquito larvicidal property. Parasit Dis. 40:991–996.
  • Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Mahesh Kumar P, et al. 2015. Eco-friendly control of malaria and arbovirus vectors using the mosquitofish Gambusia affinis and ultra-low dosages of Mimusops elengi-synthesized silver nanoparticles: towards an integrative approach? Environ Sci Pollut Res. 22:20067–20083.
  • Sujitha V, Murugan K, Paulpandi M, Panneerselvam C, Suresh U, Roni M, et al. 2015. Green-synthesized silver nanoparticle as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol Res. 114:3315–3325.
  • Suman TY, Elumalai D, Kaleena PK, Radhika Rajasree SR. 2013. GC-MS analysis of bioactive components and synthesis of silver nanoparticle using Ammannia baccifera aerial extract and its larvicidal activity against malaria and filariasis vectors. Ind Crop Prod. 47:239–245.
  • Suresh U, Murugan K, Benelli G, Nicoletti M, Barnard DR, Panneerselvam C, et al. 2015. Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res. 114:1551–1562.
  • Tewe OO, Ojeniyi FE, Abu OA. 2003. Sweet Potato Production, Utilization and Marketing in Nigeria. Lima: Social Sciences Department, International Potato Center (CIP), p. 44.
  • Vasilakis N, Shell EJ, Fokam EB, Mason PW, Hanley KA, Estes DM, Weaver SC. 2007. Potential of ancestral sylvatic dengue-2 viruses to re-emerge. Virology. 358:402–412.
  • Veerakumar K, Govindarajan M, Rajeswary M. 2013. Green synthesis of silver nanoparticles using Sida acuta (Malvaceae) leaf extract against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Parasitol Res. 112:4073–4085.
  • Veerakumar K, Govindarajan M. 2014a. Adulticidal properties of synthesized silver nanoparticles using leaf extracts of Feronia elephantum (Rutaceae) against filariasis, malaria, and dengue vector mosquitoes. Parasitol Res. 113:4085–4096.
  • Veerakumar K, Govindarajan M, Rajeswary M, Muthukumaran U. 2014b. Mosquito larvicidal properties of silver nanoparticles synthesized using Heliotropium indicum (Boraginaceae) against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res. 113:2363–2373.
  • Veerakumar K, Govindarajan M, Rajeswary M, Muthukumaran U. 2014c. Low-cost and eco-friendly green synthesis of silver nanoparticles using Feronia elephantum. Parasitol Res. 113:1775–1785.
  • Velayutham K, Rahuman A, Rajakumar G, Mohana Roopan S, Elango G, Kamaraj C, Marimuthu S, et al. 2013. Larvicidal activity of green synthesized silver nanoparticles using bark aqueous extract of Ficus racemosa against Culex quinquefasciatus and Culex gelidus. Asian Pac J Trop Med. 6:95–101.
  • Velu K, Elumalai D, Hemalatha P, Janaki A, Babu M, Hemavathi M, Patheri KK. 2015. Evaluation of silver nanoparticles toxicity of Arachis hypogaea peel extracts and its larvicidal activity against malaria and dengue vectors. Environ Sci Pollut Res. 22:17769–17779.
  • Vivek M, Senthil Kumar P, Steffi S, Sudha S. 2011. Biogenic silver nanoparticles by Gelidiella acerosa extract and their antifungal effects. Avicenna J Med Biotechnol. 3:143–148.
  • Woolfe JA. 1992. Sweet Potato. An Untapped Food Resource. Cambridge: Cambridge University Press, pp. 118–187.
  • WHO. 1981. Instructions for determining the susceptibility of adult mosquito to organochlorine, organophosphate and carbamate insecticides establishment of base line. Geneva: WHO, WHO/VBC/81.806. pp. 1–7.
  • WHO. 2005. Guidelines for laboratory and field testing of mosquito larvicides. Communicable disease control, prevention and eradication, WHO pesticide evaluation scheme. Geneva: WHO, WHO/CDS/WHOPES/GCDPP/1.3. pp. 1–41.
  • WHO. 2010. Dengue transmission research in WHO bulletin Zebit CPW (1984): effect of some crude and Azadirachta enriched neem (Azadirachta indica) seed kernel extracts of larvae of Aedes aegypti. Entomol Exp Appl. 35:11–16.
  • WHO. 2012a. Lymphatic Filariasis. Available from: http://www.who.int/mediacentre/factsheets/fs102/en/.
  • WHO. 2012b. WHO 10 facts on malaria [cited 2014 Mar 10]. Available from: http://www.who.int/features/factfiles/malaria/en/index.html.
  • Yamakawa O, Yoshimoto M, Kurata R, Adachi M. 2007. Growth suppression of human cancer cells by polyphenolics from sweet potato (Ipomea batatas) Leaves. J Agr Food Chem. 55:185–190.
  • Yoshimoto M, Yahara S, Okuno S, Islam MS, Ishiguro K, Yamakawa O. 2002. Antimutagenicity of mono-, di- and tricaffeoylquinic acid derivatives isolated from sweet potato (Ipomoea batatas L.) leaf. Biosci Biotech Biochem. 66:2336–2341.
  • Yu B, Luo J, Wang J, Zhang D, Yu S, K L. 2013. Pentasaccharide resin glycosides from Ipomoea cairica and their cytotoxic activities. Phytochem. 95:421–427.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.