6,450
Views
53
CrossRef citations to date
0
Altmetric
Articles

A small variation in average particle size of PLGA nanoparticles prepared by nanoprecipitation leads to considerable change in nanoparticles’ characteristics and efficacy of intracellular delivery

, , , , , , , , & show all
Pages 1657-1664 | Received 02 Oct 2016, Accepted 20 Dec 2016, Published online: 13 Jan 2017

References

  • Abdel-Mottaleb MM, Beduneau A, Pellequer Y, Lamprecht A. 2015. Stability of fluorescent labels in PLGA polymeric nanoparticles: quantum dots versus organic dyes. Int J Pharm. 494:471–478.
  • Agarwal R, Singh V, Jurney P, Shi L, Sreenivasan SV, Roy K. 2013. Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms. Proc Natl Acad Sci U S A. 110:17247–17252.
  • Akagi J, Kordon M, Zhao H, Matuszek A, Dobrucki J, Errington R, et al. 2013. Real-time cell viability assays using a new anthracycline derivative DRAQ7®. Cytometry A. 83:227–234.
  • Barichello JM, Morishita M, Takayama K, Nagai T. 1999. Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm. 25:471–476.
  • Beck-Broichsitter M, Nicolas J, Couvreur P. 2015. Solvent selection causes remarkable shifts of the “Ouzo region” for poly(lactide-co-glycolide) nanoparticles prepared by nanoprecipitation. Nanoscale. 7:9215–9221.
  • Beck-Broichsitter M, Rytting E, Lebhardt T, Wang X, Kissel T. 2010. Preparation of nanoparticles by solvent displacement for drug delivery: a shift in the “ouzo region” upon drug loading. Eur J Pharm Sci. 41:244–253.
  • Chang CC, Wu M, Yuan F. 2014. Role of specific endocytic pathways in electrotransfection of cells. Mol Ther Methods Clin Dev. 1:14058.
  • Chang J, Jallouli Y, Kroubi M, Yuan XB, Feng W, Kang CS, Pu PY, Betbeder D. 2009. Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood-brain barrier. Int J Pharm. 379:285–292.
  • Chang J, Paillard A, Passirani C, Morille M, Benoit JP, Betbeder D, Garcion E. 2012. Transferrin adsorption onto PLGA nanoparticles governs their interaction with biological systems from blood circulation to brain cancer cells. Pharm Res. 29:1495–1505.
  • Cho EC, Zhang Q, Xia Y. 2011. The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat Nanotechnol. 6:385–391.
  • Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Preat V. 2012. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 161:505–522.
  • Debnath P, Chakraborty S, Deb S, Nath J, Bhattacharjee D, Hussain SA. 2015. Reversible transition between excimer and J-aggregate of indocarbocyanine dye in Langmuir–Blodgett (LB) films. J Phys Chem C. 119:9429–9441.
  • Dutta D, Donaldson JG. 2012. Search for inhibitors of endocytosis: intended specificity and unintended consequences. Cell Logist. 2:203–208.
  • Gao H, Yang YW, Fan YG, Ma JB. 2006. Conjugates of poly(DL-lactic acid) with ethylenediamino or diethylenetriamino bridged bis(beta-cyclodextrin)s and their nanoparticles as protein delivery systems. J Control Release. 112:301–311.
  • Gaudin A, Yemisci M, Eroglu H, Lepetre-Mouelhi S, Turkoglu OF, Donmez-Demir B, et al. 2014. Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury. Nat Nanotechnol. 9:1054–1062.
  • He C, Hu Y, Yin L, Tang C, Yin C. 2010. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 31:3657–3666.
  • Hillaireau H, Couvreur P. 2009. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci. 66:2873–2896.
  • Koivusalo M, Welch C, Hayashi H, Scott CC, Kim M, Alexander T, et al. 2010. Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. J Cell Biol. 188:547–563.
  • Lepeltier E, Bourgaux C, Couvreur P. 2014. Nanoprecipitation and the “Ouzo effect”: application to drug delivery devices. Adv Drug Deliv Rev. 71:86–97.
  • Luk BT, Jack Hu C-M, Fang RH, Dehaini D, Carpenter C, Gao W, Zhang L. 2014. Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles. Nanoscale. 6:2730–2737.
  • Makadia HK, Siegel SJ. 2011. Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel). 3:1377–1397.
  • Mendes LP, Delgado JMF, Costa ADA, Vieira MS, Benfica PL, Lima EM, Valadares MC. 2015. Biodegradable nanoparticles designed for drug delivery: the number of nanoparticles impacts on cytotoxicity. Toxicol Vitro. 29:1268–1274.
  • Mishra B, Padaliya R, Patel RR. 2016. Exemestane encapsulated vitamin E-TPGS-polymeric nanoparticles: preparation, optimization, characterization, and in vitro cytotoxicity assessment. Artif Cells Nanomed Biotechnol. [Epub ahead of print]. DOI:10.3109/21691401.2016.1163714
  • Mora-Huertas CE, Fessi H, Elaissari A. 2011. Influence of process and formulation parameters on the formation of submicron particles by solvent displacement and emulsification-diffusion methods critical comparison. Adv Colloid Interface Sci. 163:90–122.
  • Muro S, Garnacho C, Champion JA, Leferovich J, Gajewski C, Schuchman EH, Mitragotri S, Muzykantov VR. 2008. Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol Ther. 16:1450–1458.
  • Napierska D, Thomassen LC, Rabolli V, Lison D, Gonzalez L, Kirsch-Volders M, Martens JA, Hoet PH. 2009. Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small. 5:846–853.
  • Panyam J, Labhasetwar V. 2003. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 55:329–347.
  • Prabha S, Arya G, Chandra R, Ahmed B, Nimesh S. 2016. Effect of size on biological properties of nanoparticles employed in gene delivery. Artif Cells Nanomed Biotechnol. 44:83–91.
  • Qaddoumi MG, Ueda H, Yang J, Davda J, Labhasetwar V, Lee VHL. 2004. The characteristics and mechanisms of uptake of PLGA nanoparticles in rabbit conjunctival epithelial cell layers. Pharmaceut Res. 21:641–648.
  • Ray S, Ghosh Ray S, Mandal S. 2016. Development of bicalutamide-loaded PLGA nanoparticles: preparation, characterization and in-vitro evaluation for the treatment of prostate cancer. Artif Cells Nanomed Biotechnol. [Epub ahead of print]. DOI:10.1080/21691401.2016.1196457
  • Reisch A, Klymchenko AS. 2016. Fluorescent polymer nanoparticles based on dyes: seeking brighter tools for bioimaging. Small. 12:1968–1992.
  • Rejman J, Oberle V, Zuhorn IS, Hoekstra D. 2004. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J. 377:159–169.
  • Saadati R, Dadashzadeh S. 2014. Marked effects of combined TPGS and PVA emulsifiers in the fabrication of etoposide-loaded PLGA-PEG nanoparticles: in vitro and in vivo evaluation. Int J Pharm. 464:135–144.
  • Sah E, Sah H. 2015. Recent trends in preparation of poly(lactide-co-glycolide) nanoparticles by mixing polymeric organic solution with antisolvent. J Nanomater. 2015:22.
  • Sahay G, Alakhova DY, Kabanov AV. 2010. Endocytosis of nanomedicines. J Control Release. 145:182–195.
  • Sahoo SK, Panyam J, Prabha S, Labhasetwar V. 2002. Residual polyvinyl alcohol associated with poly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J Control Release. 82:105–114.
  • Schubert S, Delaney JT, Schubert US. 2011. Nanoprecipitation and nanoformulation of polymers: from history to powerful possibilities beyond poly(lactic acid). Soft Matter. 7:1581–1588.
  • Shang J, Gao X. 2014. Nanoparticle counting: towards accurate determination of the molar concentration. Chem Soc Rev. 43:7267–7278.
  • Smart EJ, Estes K, Anderson RGW. 1995. Inhibitors that block both the internalization of caveolae and the return of plasmalemmal vesicles. Cold Spring Harb Symp Quant Biol. 60:243–248.
  • Snipstad S, Hak S, Baghirov H, Sulheim E, Morch Y, Lelu S, et al. 2016. Labeling nanoparticles: Dye leakage and altered cellular uptake. Cytometry A. [Epub ahead of print]. DOI:10.1002/cyto.a.22853
  • Sternling CV, Scriven LE. 1959. Interfacial turbulence: hydrodynamic instability and the marangoni effect. AIChE J. 5:514–523.
  • Unciti-Broceta JD, Cano-Cortés V, Altea-Manzano P, Pernagallo S, Díaz-Mochón JJ, Sánchez-Martín RM. 2015. Number of nanoparticles per cell through a spectrophotometric method – a key parameter to assess nanoparticle-based cellular assays. Sci Rep. 5:10091.
  • Wang LH, Rothberg KG, Anderson RG. 1993. Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J Cell Biol. 123:1107–1117.
  • Win KY, Feng SS. 2005. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. 26:2713–2722.
  • Yameen B, Choi WI, Vilos C, Swami A, Shi J, Farokhzad OC. 2014. Insight into nanoparticle cellular uptake and intracellular targeting. J Control Release. 190:485–499.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.