10,343
Views
86
CrossRef citations to date
0
Altmetric
Reviews

Nanozyme applications in biology and medicine: an overview

, , , , , & show all
Pages 1069-1076 | Received 16 Jan 2017, Accepted 27 Mar 2017, Published online: 21 Apr 2017

References

  • Wei H, Wang E. Nanomaterials with enzyme-like characteristics (enzymes): next-generation artificial enzymes. Chem Soc Rev. 2013;42:6060–6093.
  • Breslow R, Overman LE. 'Artificial enzyme' combining a metal catalytic group and a hydrophobic binding cavity. J Am Chem Soc. 1970;92:1075–1077.
  • Breslow R. Artificial enzymes. New York: John Wiley & Sons; 2006.
  • Abbasi E, Akbarzadeh A, Kouhi M, et al. Graphene: synthesis, bio-applications, and properties. Artif Cells Nanomed Biotechnol. 2016;44:150–156.
  • Kirby AJ, Hollfelder F. From enzyme models to model enzymes. Royal Society of Chemistry; 2009.
  • Kotov NA. Chemistry. Inorganic nanoparticles as protein mimics. Science. 2010;330:188–189.
  • Tarnuzzer RW, Colon J, Patil S, et al. Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett. 2005;5:2573–2577.
  • Chen J, Patil S, Seal S, et al. Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nature Nanotech. 2006;1:142–150.
  • Karakoti A, Singh S, Dowding JM, et al. Redox-active radical scavenging nanomaterials. Chem Soc Rev. 2010;39:4422–4432.
  • Celardo I, Pedersen JZ, Traversa E, et al. Pharmacological potential of cerium oxide nanoparticles. Nanoscale. 2011;3:1411–1420.
  • Silva GA. Nanomedicine: seeing the benefits of ceria. Nat Nanotechnol. 2006;1:92–94.
  • Xie J, Zhang X, Wang H, et al. Analytical and environmental applications of nanoparticles as enzyme mimetics. TrAC Trends Anal Chem. 2012;39:114–129.
  • Heckert EG, Karakoti AS, Seal S, et al. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials. 2008;29:2705–2709.
  • Hirst SM, Karakoti AS, Tyler RD, et al. Anti-inflammatory properties of cerium oxide nanoparticles. Small. 2009;5:2848–2856.
  • Batinic-Haberle I, Tovmasyan A, Roberts ER, et al. SOD therapeutics: latest insights into their structure-activity relationships and impact on the cellular redox-based signaling pathways. Antioxidants Redox Signal. 2014;20:2372–2415.
  • Celardo I, De Nicola M, Mandolin C, et al. Ce3+ ions determine redox-dependent anti-apoptotic effect of cerium oxide nanoparticles. ACS Nano. 2011;5:4537–4549.
  • Estevez A, Pritchard S, Harper K, et al. Neuroprotective mechanisms of cerium oxide nanoparticles in a mouse hippocampal brain slice model of ischemia. Free Rad Biol Med. 2011;51:1155–1163.
  • Das M, Patil S, Bhargava N, et al. Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials. 2007;28:1918–1925.
  • Naganuma T, Traversa E. The effect of cerium valence states at cerium oxide nanoparticle surfaces on cell proliferation. Biomaterials. 2014;35:4441–4453.
  • Xiang J, Li J, He J, et al. Cerium oxide nanoparticle modified scaffold interface enhances vascularization of bone grafts by activating calcium channel of mesenchymal stem cells. ACS Appl Mater Interfaces. 2016;8:4489–4499.
  • Ornatska M, Sharpe E, Andreescu D, et al. Paper bioassay based on ceria nanoparticles as colorimetric probes. Anal Chem. 2011;83:4273–4280.
  • Shcherbakov A, Zholobak N, Spivak NY, et al. Advances and prospects of using nanocrystalline ceria in prolongation of lifespan and healthy aging. Russ J Inorg Chem. 2015;60:1595–1625.
  • Pautler R, Kelly EY, Huang P-JJ, et al. Attaching DNA to nanoceria: regulating oxidase activity and fluorescence quenching. ACS Appl Mater Interfaces. 2013;5:6820–6825.
  • Bi S, Yan Y, Hao S, et al. Colorimetric logic gates based on supramolecular DNAzyme structures. Angewandte Chemie. 2010;122:4540–4544.
  • Andreescu D, Bulbul G, Özel RE, et al. Applications and implications of nanoceria reactivity: measurement tools and environmental impact. Environ Sci Nano. 2014;1:445–458.
  • Shcherbakov A, Zholobak N, Spivak NY, et al. Advances and prospects of using nanocrystalline ceria in cancer theranostics. Russ J Inorg Chem. 2014;59:1556–1575.
  • Xu P, Zeng GM, Huang DL, et al. Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ. 2012;424:1–10.
  • Zhang L, Wu HB, Lou XWD. Iron‐oxide‐based advanced anode materials for lithium‐ion batteries. Adv Energy Mater. 2014. doi: 10.1002/aenm.201300958
  • Figuerola A, Di Corato R, Manna L, et al. From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacol Res. 2010;62:126–143.
  • Zhou Z, Wang L, Chi X, et al. Engineered iron-oxide-based nanoparticles as enhanced T1 contrast agents for efficient tumor imaging. ACS Nano. 2013;7:3287–3296.
  • Goenka S, Sant V, Sant S. Graphene-based nanomaterials for drug delivery and tissue engineering. J Control Release. 2014;173:75–88.
  • Ellis WC, Tran CT, Denardo MA, et al. The design of more powerful iron-TAML peroxidase enzyme mimics. J Am Chem Soc. 2009;131:18052–18053.
  • Perez JM. Iron oxide nanoparticles: hidden talent. Nat Nanotechnol. 2007;2:535–536.
  • Wang N, Zhu L, Wang D, et al. Sono-assisted preparation of highly-efficient peroxidase-like Fe3O4 magnetic nanoparticles for catalytic removal of organic pollutants with H2O2. Ultrasonics Sonochem. 2010;17:526–533.
  • Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995–4021.
  • Wei H, Wang E. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal Chem. 2008;80:2250–2254.
  • Song Y, Qu K, Zhao C, et al. Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater. 2010;22:2206–2210.
  • Huang D-M, Hsiao J-K, Chen Y-C, et al. The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxide nanoparticles. Biomaterials. 2009;30:3645–3651.
  • Khan MI, Mohammad A, Patil G, et al. Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles. Biomaterials. 2012;33:1477–1488.
  • Fritzsche W, Taton TA. Metal nanoparticles as labels for heterogeneous, chip-based DNA detection. Nanotechnology. 2003;14:R63.
  • Luo X, Morrin A, Killard AJ, et al. Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis. 2006;18:319–326.
  • Azzazy HM, Mansour MM. In vitro diagnostic prospects of nanoparticles. Clin Chim Acta. 2009;403:1–8.
  • Gao L, Zhuang J, Nie L, et al. the Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotech. 2007;2:577–583.
  • Liang M, Fan K, Pan Y, et al. Fe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent. Anal Chem. 2012;85:308–312.
  • Beveridge JS, Stephens JR, Williams ME. The use of magnetic nanoparticles in analytical chemistry. Annu Rev Anal Chem (Palo Alto Calif). 2011;4:251–273.
  • Damhorst GL, Watkins NN, Bashir R. Micro- and nanotechnology for HIV/AIDS diagnostics in resource-limited settings. IEEE Trans Biomed Eng. 2013;60:715–726.
  • Liu Y, Yuan M, Qiao L, et al. An efficient colorimetric biosensor for glucose based on peroxidase-like protein-Fe3O4 and glucose oxidase nanocomposites. Biosensors Bioelectronics. 2014;52:391–396.
  • Mu J, Li J, Zhao X, et al. Cobalt-doped graphitic carbon nitride with enhanced peroxidase-like activity for wastewater treatment. RSC Adv. 2016;6:35568–35576.
  • Mu J, Zhang L, Zhao M, et al. Co3O4 nanoparticles as an efficient catalase mimic: properties, mechanism and its electrocatalytic sensing application for hydrogen peroxide. J Mol Catal A Chem. 2013;378:30–37.
  • Mu J, Zhang L, Zhao M, et al. Catalase mimic property of Co3O4 nanomaterials with different morphology and its application as a calcium sensor. ACS Appl Mater Interfaces. 2014;6:7090–7098.
  • Alizadeh E, Zarghami N, Eslaminejad M, et al. The effect of dimethyl sulfoxide (DMSO) on hepatic differentiation of mesenchymal stem cells. Artif Cells Nanomed Biotechnol. 2016;44:157–164.
  • Dong J, Song L, Yin J-J, et al. Co3O4 nanoparticles with multi-enzyme activities and their application in immunohistochemical assay. ACS Appl Mater Interfaces. 2014;6:1959–1970.
  • Jia H, Yang D, Han X, et al. Peroxidase-like activity of the Co3O4 nanoparticles used for biodetection and evaluation of antioxidant behavior. Nanoscale. 2016;8:5938–5945.
  • Wang T, Su P, Li H, et al. The triple-enzyme mimetic activity of Co3O4 nanotubes and their applications in colorimetric sensing of glutathione. New J Chem 2016;40:10056–10063.
  • Liu F, He J, Zeng M, et al. Cu–hemin metal-organic frameworks with peroxidase-like activity as peroxidase mimics for colorimetric sensing of glucose. J Nanopart Res. 2016;18:1–9.
  • Hong L, Liu A-L, Li G-W, et al. Chemiluminescent cholesterol sensor based on the peroxidase-like activity of cupric oxide nanoparticles. Biosensors Bioelectron. 2013;43:1–5.
  • Hu A-L, Liu Y-H, Deng H-H, et al. Fluorescent hydrogen peroxide sensor based on cupric oxide nanoparticles and its application for glucose and l-lactate detection. Biosens Bioelectron. 2014;61:374–378.
  • Nagvenkar AP, Gedanken A. Cu0. 89Zn0. 11O, A New Peroxidase-Mimicking Nanozyme with High Sensitivity for Glucose and Antioxidant Detection. ACS Appl Mater Interfaces. 2016;8:22301–22308.
  • Xu Y, Wu X-Q, Shen J-S, et al. Highly selective and sensitive recognition of histidine based on the oxidase-like activity of Cu2+ ions. RSC Adv. 2015;5:92114–92120.
  • Liu X, Wang Q, Zhao H, et al. BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics. Analyst. 2012;137:4552–4558.
  • Gao W, Liu Z, Qi L, et al. Ultrasensitive glutathione detection based on lucigenin cathodic electrochemiluminescence in the presence of MnO2 nanosheets. Anal Chem. 2016;88:7654–7659.
  • Natalio F, André R, Hartog AF, et al. Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nature Nanotech. 2012;7:530–535.
  • Rehder D. Vanadate-dependent peroxidases in macroalgae: function, applications, and environmental impact. Oceanography: Open Access; 2014.
  • Zhang L, Xia F, Song Z, et al. Synthesis and formation mechanism of VO2 (A) nanoplates with intrinsic peroxidase-like activity. RSC Adv. 2015;5:61371–61379.
  • Sun J, Li C, Qi Y, et al. Optimizing colorimetric assay based on V2O5 nanozymes for sensitive detection of H2O2 and glucose. Sensors. 2016;16:584.
  • Lin Y, Ren J, Qu X. Nano-gold as artificial enzymes: hidden talents . Adv Mater Weinheim. 2014;26:4200–4217.
  • Kabanov AV, Batrakova EV. Polymer nanomaterials for drug delivery across the blood brain barrier. In: Neuroimmune pharmacology. New York: Springer; 2017. p. 847–868.
  • Bazin I, Tria SA, Hayat A, et al. New biorecognition molecules in biosensors for the detection of toxins. Biosens Bioelectron. 2017;87:285–298.
  • Mühlberg M, Millemaggi A, Coates I, et al. Chemical communications RSC. li/chemcomm editorial board. Chem Commun. 2017;53:271–283.
  • Darabdhara G, Sharma B, Das MR, et al. Cu-Ag bimetallic nanoparticles on reduced graphene oxide nanosheets as peroxidase mimic for glucose and ascorbic acid detection. Sensors Actuat B: Chem. 2017;238:842–851.
  • Gupta V, Sengupta M, Prakash J, Tripathy BC. Drug Targeting and Delivery. In: Basic and Applied Aspects of Biotechnology. New York: Springer; 2017. p. 279–303.
  • Garg B, Bisht T. Carbon nanodots as peroxidase nanozymes for biosensing. molecules. Molecules. 2016;21:1653.
  • Cheng H, Lin S, Muhammad F, et al. Rationally modulate the oxidase-like activity of nanoceria for self-regulated bioassays. ACS Sens. 2016;1:1336–1343.
  • Ge C, Fang G, Shen X, et al. Facet energy versus enzyme-like activities: the unexpected protection of palladium nanocrystals against oxidative damage. ACS Nano. 2016;10:10436–10445.
  • Wang X, Guo W, Hu Y, Wu J, Wei H. Challenges and Perspectives. In: Nanozymes: Next Wave of Artificial Enzymes. New York: Springer; 2016. p. 103–107.
  • Nasrabadi HT, Abbasi E, Davaran S, et al. Bimetallic nanoparticles: preparation, properties, and biomedical applications. Artif Cells Nanomed Biotechnol. 2016;44:376–380.
  • Akbarzadeh A, Koschny T, Kafesaki M, et al. Graded-index optical dimer formed by optical force. Opt Express. 2016;24:11376–11386.
  • Cao H, Dan Z, He X, et al. Liposomes coated with isolated macrophage membrane can target lung metastasis of breast cancer. ACS Nano. 2016;10:7738–7748.
  • Wang X-Q, Lei Q, Zhu J-Y, et al. Cucurbit [8] until regulated activatable supramolecular photosensitizer for targeted cancer imaging and photodynamic therapy. ACS Appl Mater Interfaces. 2016;8:22892–22899.
  • Singh S. Cerium oxide based nanozymes: Redox phenomenon at biointerfaces. Biointerphases. 2016;11:04B202.
  • Rahimi-Rad MH, Alizadeh E, Samarei R. Document aquatic leech as a rare cause of respiratory distress and hemoptysis. Pneumologia. 2011;60:85–86.
  • Liang H, Lin F, Zhang Z, Liu B, Jiang S, Yuan Q, et al. Multi-copper laccase mimicking nanozymes with nucleotides as ligands. ACS Appl Mater Interfaces. 2017;9:1352–1360.
  • Neri S, Garcia Martin S, Pezzato C, Prins LJ. Photoswitchable catalysis by a nanozyme mediated by a light-sensitive cofactor. J Am Chem Soc. 2017;139:1794–1797.
  • Liu B, Liu J. Surface modification of nanozymes. Nano Res. 2017:1–24.
  • Huang Y, Liu C, Pu F, Liu Z, Ren J, Qu X. GO-Se nanocomposite as an antioxidant nanozyme for cytoprotection. Chem Commun. 2017;53:3082–3085.
  • Gao L, Koo H. Do catalytic nanoparticles offer an improved therapeutic strategy to combat dental biofilms? Future Med. 2017;12:275–279.
  • Zou HY, Yang T, Lan J, Huang CZ. Scavenging the peroxidase mimetic activity of erythrocyte-like Cu1. 8S nanoparticles for colorimetric detection of glutathione. Anal Methods. 2017;9:841–846.
  • Rad MHR, Alizadeh E, Ilkhanizadeh B, et al. Recurrent laryngeal papillomatosis with bronchopulmonaryl spread in a 70-year-old man. Tuberkuloz ve Toraks. 2007;55:299–302.
  • Pang L, Zhang C, Qin J, et al. A novel strategy to achieve effective drug delivery: exploit cells as carrier combined with nanoparticles. Drug Deliv. 2017;24:83–91.
  • Chen Y, Xianyu Y, Jiang X. Surface modification of gold nanoparticles with small molecules for biochemical analysis. Accounts Chem Res. 2017;50:310–319.
  • Lin X, Liu Y, Tao Z, Gao J, Deng J, Yin J, et al. Nanozyme-based bio-barcode assay for high sensitive and logic-controlled specific detection of multiple DNAs. Biosensors Bioelectron. 2017;94:471–477.
  • Vallabani NS, Karakoti AS, Singh S. ATP-mediated intrinsic peroxidase-like activity of Fe3O4-based nanozyme: one step detection of blood glucose at physiological pH. Colloids Surfaces B Biointerfaces. 2017;153:52–60.
  • Cai K, Wang AZ, Yin L, Cheng J. Bio-nano interface: the impact of biological environment on nanomaterials and their delivery properties. J Control Release. Forthcoming. doi: 10.1016/j.jconrel.2016.11.034
  • Abbasi E, Akbarzadeh A, Kouhi M, et al. Graphene: synthesis, bio-applications, and properties. Artif Cells Nanomed Biotechnol. 2016;44:150–156.
  • Aiguo S, Jiming H. Research progress of nanozymes and its application in analysis. Chinese J Appl Chem. 2016;33:1245–1252.
  • Gao L, Yan X. Nanozymes: an emerging field bridging nanotechnology and biology. Sci China Life Sci. 2016;59:400–402.
  • Liang H, Liu B, Yuan Q, et al. Magnetic iron oxide nanoparticle seeded growth of nucleotide coordinated polymers. ACS Appl Mater Interfaces. 2016;8:15615–15622.
  • Li H, Huang Y, Yu Y, et al. Self-catalyzed assembly of peptide scaffolded nanozyme as a dynamic biosensing system. ACS Appl Mater Interfaces. 2016;8:2833–2839.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.