872
Views
3
CrossRef citations to date
0
Altmetric
Articles

Colloidal synthesis of biocompatible iron disulphide nanocrystals

ORCID Icon, , , , , , , & ORCID Icon show all
Pages 1034-1041 | Received 07 Feb 2017, Accepted 23 Jul 2017, Published online: 06 Aug 2017

References

  • Chen-Ho L, Ming-Yen L, Lih-Juann C. Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage. J Mater Chem. 2012;22:19–30.
  • Bhandari KP, Koirala P, Paudel NR, et al. Iron pyrite nanocrystal film serves as a copper-free back contact for polycrystalline CdTe thin film solar cells. Sol Energy Mat Sol C. 2015;140:108–114.
  • Martínez-Alonso C, Cortina-Marrero HJ, Coria-Monroy CS, et al. Solution synthesized CdS nanoparticles for hybrid solar cell applications. J Mater Sci: Mater Electron. 2015;26:5539–5545.
  • Arenas MC, Mendoza N, Cortina H, et al. Influence of poly3-octylthiophene (P3OT) film thickness and preparation method on photovoltaic performance of hybrid ITO/CdS/P3OT/Au solar cells. Sol Energy Mat Sol C. 2010;94:29–33.
  • Quintana-Ramírez PV, Arenas-Arrocena MC, Santos-Cruz J, et al. Growth evolution and phase transition from chalcocite to digenite in nanocrystalline copper sulfide: morphological, optical and electrical properties. Beilstein J Nanotechnol. 2014;5:1542–1552.
  • Alam KM, Sarker JC, Lee S, et al. Synthesis, characterization and processing of cubic iron pyrite nanocrystals in a photovoltaic cell. Mater Chem Phys. 2014;148:1022–1028.
  • Murphy R, Strongin DR. Surface reactivity of pyrite and related sulfides. Surf Sci Rep. 2009;64:1–45.
  • Vedavathi A, Munikrishna R, Ramakrishna R. Effect of precursor concentration on structural and morphological properties of iron pyrite thin films. Procedia Mater Sci. 2015;10:279–284.
  • Wadia C, Alivisatos AP, Kammen DM. Materials availability expands the opportunity for large-scale photovoltaics deployment. Environ Sci Technol. 2009;43:2072–2077.
  • Alam KM, Manasreh MO, Mook KY. Synthesis, characterization and optoelectronic properties of iron pyrite nanohusks. Mater Lett. 2014;126:181–184.
  • Zhai G, Xie R, Wang H, et al. Effect of capping ligands on the optical properties and electronic energies of iron pyrite FeS2 nanocrystals and solid thin films. J Alloy Compd. 2016;674:9–15.
  • Yu P, Qu S, Jia C, et al. Modified synthesis of FeS2 quantum dots for hybrid bulk-heterojunction solar cells. Mater Lett. 2015;157:235–238.
  • Long F, He J, Zhang M, et al. Microwave-hydrothermal synthesis of Co-doped FeS2 as a visible-light photocatalyst. J Mater Sci. 2015;50:1848–1854.
  • Duan Y, Han DS, Batchelor B, et al. Synthesis, characterization, and application of pyrite for removal of mercury. Colloid Surface A. 2016;490:326–335.
  • Golsheikh AM, Huang NM, Lim HN, et al. One-pot hydrothermal synthesis and characterization of FeS2 (pyrite)/graphene nanocomposite. Chem Eng J. 2013;218:276–284.
  • Jung KE, Batchelor B. Synthesis and characterization of pyrite (FeS2) using microwave irradiation. Mater Res Bull. 2009;44:1553–1558.
  • E’jazi N, Aghaziarati M. Determination of optimum condition to produce nanocrystalline pyrite by solvothermal synthesis method. Adv Powder Technol. 2012;23:52–357.
  • Mangham SC, Alam KM, Benamara M, et al. Synthesis of iron pyrite nanocrystals utilizing trioctylphosphine oxide (TOPO) for photovoltaic devices. Mater Lett. 2013;97:144–147.
  • Mao B, Dong Q, Exstrom CL, et al. Surface thermal stability of iron pyrite nanocrystals: role of capping ligands. Thin Solid Films. 2014;562:361–366.
  • Lucas JM, Tuan CC, Lounis SD, et al. Ligand-controlled colloidal synthesis and electronic structure characterization of cubic iron pyrite (FeS2) nanocrystals. Chem Mater. 2013;25:1615–1620.
  • Binxia Y, Weiling L, Shan-Tung T. Synthesis of air stable and pure phase pyrite FeS2 nanoparticles in water. Mater Lett. 2015;142:160–162.
  • Kaur G, Singh B, Singh P, et al. Preferentially grown nanostructured iron disulfide (FeS2) for removal of industrial pollutants. RSC Adv. 2016;6:99120–99128.
  • Argueta-Figueroa L, Martínez-Alvarez O, Santos-Cruz J, et al. Nanomaterials made of non-toxic metallic sulfides: a systematic review of their potential biomedical applications. Mat Sci Eng C. 2017;76:1305–1315.
  • He Q, Huang C, Liu J. Preparation, characterization and antibacterial activity of magnetic greigite and Fe3S4/Ag nanoparticles. Nanosci Nanotechnol Lett. 2014;6:10–17.
  • Weld JT, Gunther A. The antibacterial properties of sulfur. J Exp Med. 1947;85:531–542.
  • Kim HT, Nguyen TPN, Kim CD, et al. Formation mechanisms of pyrite (FeS2) nano-crystals synthesized by colloidal route in sulfur abundant environment. Mater Chem Phys. 2014;148:1095–1098.
  • Yoder TS, Tussing M, Cloud JE, et al. Resilient carbon encapsulation of iron pyrite (FeS2) cathodes in lithium ion batteries. J Power Sources. 2015;274:685–692.
  • Qiu W, Xia J, Zhong H, et al. L-cysteine-assisted synthesis of cubic pyrite/nitrogen-doped graphene composite as anode material for lithium-ion batteries. Electrochim Acta. 2014;137:197–205.
  • Su-Ching H, Chih-Ming H, Szu-Ying C, et al. Facile synthesis and characterization of high temperature phase FeS2 pyrite nanocrystals. Mater Lett. 2012;75:152–154.
  • Liu S, Li M, Li S, et al. Synthesis and adsorption/photocatalysis performance of pyrite FeS2. Appl Surf Sci. 2013;268:213–217.
  • Zeng-Hui D, Xiang-Rong X, Fu-Ming L, et al. Photocatalytic degradation of malachite green by pyrite and its synergism with Cr(VI) reduction: performance and reaction mechanism. Sep Purif Technol. 2015;154:168–175.
  • Balcioglu IA, Arslan I, Sacan MT. Homogenous and heterogenous advanced oxidation of two commercial reactive dyes. Environ Technol. 2001;22:813–822.
  • Zhong X, Royer S, Zhang H, et al. Mesoporous silica iron-doped as stable and efficient heterogeneous catalyst for the degradation of C.I. Acid Orange 7 using sono–photo-Fenton process. Sep Purif Technol. 2011;80:163–171.
  • Bernal-Martinez LA, Barrera-Diaz C, Solis-Morelos C, et al. Synergy of electrochemical and ozonation processes in industrial wastewater treatment. Chem Eng J. 2010;165:71–77.
  • Soo-Myung K, Alfons V. Degradation of organic pollutant by the photo-Fenton-process. Chem Eng Technol. 1998;21:187–191.
  • Borda MJ, Elsetinow AR, Strongin DR, et al. A mechanism for the production of hydroxyl radical at surface defect sites on pyrite. Geochim Cosmochim Acta. 2003;67:935–939.
  • Rickard D, Hatton B, Murphy DM, et al. FeS-induced radical formation and its effect on plasmid DNA. Aquat Geochem. 2011;17:545–566.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.