3,887
Views
41
CrossRef citations to date
0
Altmetric
Articles

Larvicidal and pupicidal evaluation of silver nanoparticles synthesized using Aquilaria sinensis and Pogostemon cablin essential oils against dengue and zika viruses vector Aedes albopictus mosquito and its histopathological analysis

, , , &
Pages 1171-1179 | Received 01 Jul 2017, Accepted 05 Aug 2017, Published online: 31 Aug 2017

References

  • Govindarajan M, Rajeswary M, Senthilmurugan S, et al. Larvicidal activity of the essential oil from Amomum subulatum Roxb.(Zingiberaceae) against Anopheles subpictus, Aedes albopictus and Culex tritaeniorhynchus (Diptera: Culicidae), and non-target impact on four mosquito natural enemies. Physiol Mol Plant Pathol. 2017. doi: 10.1016/j.pmpp.2017.01.003
  • Benelli G, Mehlhorn H. Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control. Parasitol Res. 2016;115:1747–1754.
  • Benelli G, Iacono AL, Canale A, et al. Mosquito vectors and the spread of cancer: an overlooked connection?. Parasitol Res. 2016;115:2131–2137.
  • Cunze S, Koch LK, Kochmann J, et al. Aedes albopictus and Aedes japonicus-two invasive mosquito species with different temperature niches in Europe. Parasit Vectors. 2016;9:1–12.
  • Kumar PM, Murugan K, Madhiyazhagan P, et al. Biosynthesis, characterization, and acute toxicity of Berberis tinctoria-fabricated silver nanoparticles against the Asian tiger mosquito, Aedes albopictus, and the mosquito predators Toxorhynchites splendens and Mesocyclops thermocyclopoides. Parasitol Res. 2016;115:751–759.
  • Buhagiar J. A second record of Aedes (Stegomyia) albopictus (Diptera: Culicidae) in Malta. Eur Mosquito Bull. 2009;27:65–67.
  • Ngoagouni C, Kamgang B, Kazanji M, et al. Potential of Aedes aegypti and Aedes albopictus populations in the Central African Republic to transmit enzootic chikungunya virus strains. Parasit Vectors. 2017;10:1–5.
  • Govindarajan M, Rajeswary M, Veerakumar K, et al. Green synthesis and characterization of silver nanoparticles fabricated using Anisomeles indica: mosquitocidal potential against malaria, dengue and Japanese encephalitis vectors. Exp Parasitol. 2016;161:40–47.
  • Suresh U, Murugan K, Panneerselvam C, et al. Suaeda maritima-based herbal coils and green nanoparticles as potential biopesticides against the dengue vector Aedes aegypti and the tobacco cutworm Spodoptera litura. Physiol Mol Plant Pathol. 2017. doi: 10.1016/j.pmpp.2017.01.002
  • Govindarajan M, Rajeswary M, Muthukumaran U, et al. Single-step biosynthesis and characterization of silver nanoparticles using Zornia diphylla leaves: a potent eco-friendly tool against malaria and arbovirus vectors. J Photochem Photobiol B. 2016;161:482–489.
  • Vilas V, Philip D, Mathew J. Biosynthesis of Au and Au/Ag alloy nanoparticles using Coleus aromaticus essential oil and evaluation of their catalytic, antibacterial and antiradical activities. J Mol Liq. 2016;221:179–189.
  • Manju S, Malaikozhundan B, Vijayakumar S, et al. Antibacterial, antibiofilm and cytotoxic effects of Nigella sativa essential oil coated gold nanoparticles. Microb Pathog. 2016;91:129–135.
  • Dahham SS, Hassan LEA, Ahamed MBK, et al. In vivo toxicity and antitumor activity of essential oils extract from agarwood (Aquilaria crassna). BMC Complement Altern Med. 2016;16:11.
  • Chen H, Yang Y, Xue J, et al. Comparison of compositions and antimicrobial activities of essential oils from chemically stimulated agarwood, wild agarwood and healthy Aquilaria sinensis (Lour.) Gilg trees. Molecules. 2011;16:4884–4896.
  • Zhang Z, Han XM, Wei JH, et al. Compositions and antifungal activities of essential oils from agarwood of Aquilaria sinensis (Lour.) Gilg induced by Lasiodiplodia theobromae (Pat.) Griffon. and Maubl. J Braz Chem Soc. 2014;25:20–26.
  • Zhang R, Yan P, Li Y, et al. A pharmacokinetic study of patchouli alcohol after a single oral administration of patchouli alcohol or patchouli oil in rats. Eur J Drug Metab Pharmacokinet. 2016;41:441–448.
  • Chen H, Liao H, Liu Y, et al. Protective effects of pogostone from Pogostemonis Herba against ethanol-induced gastric ulcer in rats. Fitoterapia. 2015;100:110–117.
  • WHO. 1996 Report of the WHO Informal Consultation on the (Evaluation and Testing of Insecticides), Geneva.
  • Kjanijou M, Jiraungkoorskul K, Kosai P, et al. Effect of Murraya paniculata leaf extract against Culex quinquefasciatus larva. Asian Jo F Biological Sciences. 2012;5:201–208.
  • Finney D. Probit analysis. 3rd ed. London (UK): R Cambridge University Press; 1971. p. 68–72.
  • Vilas V, Philip D, Mathew J. Essential oil mediated synthesis of silver nanocrystals for environmental, anti-microbial and antioxidant applications. Mater Sci Eng C. 2016;61:429–436.
  • Ramanibai R, Velayutham K. Synthesis of silver nanoparticles using 3, 5-di-t-butyl-4-hydroxyanisole from Cynodon dactylon against Aedes aegypti and Culex quinquefasciatus. J Asia Pac Entomol. 2016;19:603–609.
  • Suman T, Elumalai D, Kaleena P, et al. GC–MS analysis of bioactive components and synthesis of silver nanoparticle using Ammannia baccifera aerial extract and its larvicidal activity against malaria and filariasis vectors. Ind Crops Prod. 2013;47:239–245.
  • Kalimuthu K, Panneerselvam C, Chou C, et al. Control of dengue and Zika virus vector Aedes aegypti using the predatory copepod Megacyclops formosanus: Synergy with Hedychium coronarium-synthesized silver nanoparticles and related histological changes in targeted mosquitoes. Process Saf Environ Prot. 2017;109:82–96.
  • Fouad H, Hongjie L, Hosni D, et al. Controlling Aedes albopictus and Culex pipiens pallens using silver nanoparticles synthesized from aqueous extract of Cassia fistula fruit pulp and its mode of action. Artif Cells Nanomed Biotechnol. 2017. [Epub ahead of print]. doi: 10.1080/21691401.2017.1329739
  • Basu S, Maji P, Ganguly J. Rapid green synthesis of silver nanoparticles by aqueous extract of seeds of Nyctanthes arbor-tristis. Appl Nanosci. 2016;6:1–5.
  • Manjamadha V, Muthukumar K. Ultrasound assisted green synthesis of silver nanoparticles using weed plant. Bioprocess Biosyst Eng. 2016;39:401–411.
  • Rokade AA, Kim JH, Lim SR, et al. A novel green synthesis of silver nanoparticles using Rubus crataegifolius Bge fruit extract. J Clust Sci. 2017;28:2017–2026.
  • Deepak P, Sowmiya R, Ramkumar R, et al. Structural characterization and evaluation of mosquito-larvicidal property of silver nanoparticles synthesized from the seaweed, Turbinaria ornata (Turner) J. Agardh 1848. Artif Cells Nanomed Biotechnol. 2016;44:990–998.
  • Yuan CG, Huo C, Gui B, et al. Green synthesis of silver nanoparticles using Chenopodium aristatum L. Stem extract and their catalytic/antibacterial activities. J Clust Sci. 2017;28:1319–1333.
  • Krishna IM, Reddy GB, Veerabhadram G, et al. Eco-friendly green synthesis of silver nanoparticles using salmalia malabarica: synthesis, characterization, antimicrobial, and catalytic activity studies. Appl Nanosci. 2016;6:681–689.
  • Gopinath K, Devi NP, Govindarajan M, et al. One-pot green synthesis of silver nanoparticles using the orchid leaf extracts of Anoectochilus elatus: growth inhibition activity on seven microbial pathogens. J Clust Sci. 2017;28:1541–1550.
  • Fouad H, Hongjie L, Yanmei D, et al. Synthesis and characterization of silver nanoparticles using Bacillus amyloliquefaciens and Bacillus subtilis to control filarial vector Culex pipiens pallens and its antimicrobial activity. Artif Cells Nanomed Biotechnol. 2016. [Epub ahead of print]. doi: 10.1080/21691401.2016.1241793
  • Rajaganesh R, Murugan K, Panneerselvam C, et al. Fern-synthesized silver nanocrystals: towards a new class of mosquito oviposition deterrents? Res Vet Sci. 2016;109:40–51.
  • Elemike EE, Onwudiwe DC, Ekennia AC, et al. Phytosynthesis of silver nanoparticles using aqueous leaf extracts of Lippia citriodora: antimicrobial, larvicidal and photocatalytic evaluations. Mater Sci Eng C. 2017;75:980–989.
  • Pavithra BV, Ragavendran C, Murugan N, et al. Ipomoea batatas (Convolvulaceae)-mediated synthesis of silver nanoparticles for controlling mosquito vectors of Aedes albopictus, Anopheles stephensi, and Culex quinquefasciatus (Diptera: Culicidae). Artif Cell Nanomed Biotechnol. 2016. [Epub ahead of print]. doi: 10.1080/21691401.2016.1261873
  • Park HM, Park IK. Larvicidal activity of Amyris balsamifera, Daucus carota and Pogostemon cablin essential oils and their components against Culex pipiens pallens. J Asia Pac Entomol. 2012;15:631–634.
  • Albuquerque EL, Lima JK, Souza FH, et al. Insecticidal and repellence activity of the essential oil of Pogostemon cablin against urban ants species. Acta Trop. 2013;127:181–186.
  • Zahran HEDM, Abou-Taleb HK, Abdelgaleil SA. Adulticidal, larvicidal and biochemical properties of essential oils against Culex pipiens L. J Asia-Pac Entomol. 2017;20:133–139.
  • Benelli G, Pavela R, Iannarelli R, et al. Synergized mixtures of Apiaceae essential oils and related plant-borne compounds: larvicidal effectiveness on the filariasis vector Culex quinquefasciatus Say. Ind Crops Prod. 2017;96:186–195.
  • Benelli G, Govindarajan M, Rajeswary M, et al. Larvicidal activity of Blumea eriantha essential oil and its components against six mosquito species, including Zika virus vectors: the promising potential of (4E, 6Z)-allo-ocimene, carvotanacetone and dodecyl acetate. Parasitol Res. 2017;116:1175–1188.
  • Bedini S, Flamini G, Cosci F, et al. Cannabis sativa and Humulus lupulus essential oils as novel control tools against the invasive mosquito Aedes albopictus and fresh water snail Physella acuta. Ind Crops Prod. 2016;85:318–323.
  • Jinu U, Rajakumaran S, Senthil-Nathan S, et al. Potential larvicidal activity of silver nanohybrids synthesized using leaf extracts of Cleistanthus collinus (Roxb.) Benth. ex Hook. f. and Strychnos nux-vomica L. nux-vomica against dengue, Chikungunya and Zika vectors. Physiol Mol Plant Pathol. 2017. doi: 10.1016/j.pmpp.2017.05.003
  • Govindarajan M, Kadaikunnan S, Alharbi NS, et al. Single-step biological fabrication of colloidal silver nanoparticles using Hugonia mystax: larvicidal potential against Zika virus, dengue, and malaria vector mosquitoes. Artif Cells Nanomed Biotechnol. 2016;1–9.
  • Azarudeen RMST, Govindarajan M, AlShebly MM, et al. Size-controlled biofabrication of silver nanoparticles using the Merremia emarginata leaf extract: toxicity on Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae) and non-target mosquito predators. J Asia Pac Entomol. 2017;20:359–366.
  • Bhuvaneswari R, Xavier RJ, Arumugam M. Larvicidal property of green synthesized silver nanoparticles against vector mosquitoes (Anopheles stephensi and Aedes aegypti). J King Saud Univ Sci. 2016;28:318–323.
  • Nunes FC, Leite JA, Oliveira LH, et al. The larvicidal activity of Agave sisalana against L4 larvae of Aedes aegypti is mediated by internal necrosis and inhibition of nitric oxide production. Parasitol Res. 2015;114:543–549.
  • de Castro DSB, da Silva DB, Tibúrcio JD, et al. Larvicidal activity of essential oil of Peumus boldus Molina and its ascaridole-enriched fraction against Culex quinquefasciatus. Exp Parasitol. 2016;171:84–90.
  • Al-Mekhlafi FA. Larvicidal, ovicidal activities and histopathological alterations induced by Carum copticum (Apiaceae) extract against Culex pipiens (Diptera: Culicidae). Saudi J Biol Sci. 2017. doi: 10.1016/j.sjbs.2017.02.010
  • Sundararajan B, Kumari BR. Novel synthesis of gold nanoparticles using Artemisia vulgaris L. leaf extract and their efficacy of larvicidal activity against dengue fever vector Aedes aegypti L. J Trace Elem Med Biol. 2017;43:187–196.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.