1,836
Views
41
CrossRef citations to date
0
Altmetric
Articles

An improved surface for enhanced stem cell proliferation and osteogenic differentiation using electrospun composite PLLA/P123 scaffold

, , , &
Pages 1274-1281 | Received 22 Jun 2017, Accepted 11 Aug 2017, Published online: 24 Aug 2017

References

  • Lee NK, Sowa H, Hinoi E, et al. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130:456–469.
  • Porter JR, Ruckh TT, Popat KC. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnol Prog. 2009;25:1539–1560.
  • Polo-corrales L, Latorre-esteves M, Ramirez-vick JE. Scaffold design for bone regeneration. J Nanosci Nanotechnol. 2014;14:15–56.
  • Li J, Hong J, Zheng Q, et al. Repair of rat cranial bone defects with nHAC/PLLA and BMP-2-related peptide or rhBMP-2. J Orthop Res. 2011;29:1745–1752.
  • Lane JM, Tomin E, Bostrom MPG. Biosynthetic bone grafting. Clin Orthop Relat Res. 1999;367:107–117.
  • Oryan A, Alidadi S, Moshiri A, et al. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res. 2014;9:1–27.
  • Qi H, Ye Z, Ren H, et al. Bioactivity assessment of PLLA/PCL/HAP electrospun nanofibrous scaffolds for bone tissue engineering. Life Sci. 2016;148:139–144.
  • Burg KJ, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials. 2000;21:2347–2359.
  • Khojasteh A, Behnia H, Dashti SG, et al. Current trends in mesenchymal stem cell application in bone augmentation: a review of the literature. J Oral Maxillofac Surg. 2012;70:972–982.
  • Tabatabaei FS, Motamedian SR, Gholipour F, et al. Craniomaxillofacial bone engineering by scaffolds loaded with stem cells: a systematic review. J Den Sch. 2017;30:113–130.
  • Motamedian SR, Hosseinpour S, Ahsaie MG, et al. Smart scaffolds in bone tissue engineering: a systematic review of literature. World J Stem Cells. 2015;7:657–668.
  • Thavornyutikarn B, Chantarapanich N, Chen Q. Bone tissue engineering scaffolding: computer-aided scaffolding techniques. Prog Biomater. 2014;3:61–102.
  • Fröhlich M, Grayson WL, Wan LQ, et al. Tissue engineered bone grafts: biological requirements, tissue culture and clinical relevance. Cscr. 2008;3:254–264.
  • Lou T, Wang X, Song G. Fabrication of nano-fibrous poly(L-lactic acid) scaffold reinforced by surface modified chitosan micro-fiber. Int J Biol Macromol. 2013;61:353–358.
  • Khajavi R, Abbasipour M, Bahador A. Electrospun biodegradable nanofibers scaffolds for bone tissue engineering. J Appl Polym Sci. 2016;133:42883 (1–19).
  • Xie L, Yu H, Yang W, et al. Preparation, in vitro degradability, cytotoxicity, and in vivo biocompatibility of porous biocomposite scaffolds. J Biomat Sci Poly Edi. 2016;27:5063.
  • Lu L, Peter SJ, Lyman MD, et al. In vitro degradation of porous poly (L-lactic acid) foams. Biomaterials. 2000;21:1595–1605.
  • Kontogiannopoulos KN, Assimopoulou AN, Tsivintzelis I, et al. Electrospun fiber mats containing shikonin and derivatives with potential biomedical applications. Int J Pharm. 2011;409:216–228.
  • Wang S, Cui W, Bei J. Bulk and surface modifications of polylactide. Anal Bioanal Chem. 2005;381:547–556.
  • Akkas T, Citak C, Sirkecioglu A, et al. Which is more effective for protein adsorption: surface roughness, surface wettability or swelling? Case study of polyurethane films prepared from castor oil and poly (ethylene glycol). Polym Int. 2012;62:1202–1209.
  • Chang H, Huang C, Lin K, et al. Effect of surface potential on NIH3T3 cell adhesion and proliferation. J Phys Chem C. 2014;118:14464–14470.
  • Jacobs T, Declercq H, De Geyter N, et al. Plasma surface modification of polylactic acid to promote interaction with fibroblasts. J Mater Sci Mater Med. 2013;24:469–478.
  • Wu J, Wang N, Zhao Y, et al. Electrospinning of multilevel structured functional micro-/nanofibers and their applications. J Mater Chem A1.1. 2013;25:7290–7305.
  • Xue Z, Cao Y, Liu N, et al. Special wettable materials for oil/water separation. J Mater Chem A2. 2014;8:2445–2460.
  • Mirhosseini MM, Zargarian SS. Fabrication and characterization of hydrophilic poly (e-caprolactone)/pluronic P123 electrospun fibers. J Appl Polym Sci. 2016;133:43345–43355.
  • Cui W, Li X, Zhou S, et al. Degradation patterns and surface wettability of electrospun fibrous mats. Polym Degrad Stabil. 2008;93:731–738.
  • Liu W, Zhan J, Su Y, et al. Effects of plasma treatment to nanofibers on initial cell adhesion and cell morphology. Colloids Surf B Biointerf. 2014;113:101–106.
  • Ma BM, Gupta M, Li Z, et al. Decorated electrospun fibers exhibiting superhydrophobicity. Adv Mater. 2007;19:255–259.
  • Cui W, Cheng L, Li H, et al. Preparation of hydrophilic poly (L-lactide) electrospun fibrous scaffolds modified with chitosan for enhanced cell biocompatibility. Polymer. 2012;53:2298–2305.
  • Khatri Z, Wei K, Kim B, et al. Effect of deacetylation on wicking behavior of co-electrospun cellulose acetate/polyvinyl alcohol nanofibers blend. Carbohydr Polym. 2012;87:2183–2188.
  • De Luca AC, Terenghi G, Downes S. Chemical surface modification of poly-e-caprolactone improves Schwann cell proliferation for peripheral nerve repair. Tissue Eng Regen Med. 2012;8:153–163.
  • Kurusu RS, Demarquette NR. Wetting of hydrophilic electrospun mats produced by blending SEBS with PEO–PPO–PEO copolymers of different molecular weight. Langmuir. 2016;32:1846–1853.
  • Zhang Y, Ouyang H, Lim CT, et al. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res Part B Appl Biomater. 2004;72:156–165.
  • Savoji H, Lerouge S, Ajji A, et al. Plasma-etching for controlled modification of structural and mechanical properties of electrospun PET scaffolds. Plasma Process Polym. 2015;12:314–327.
  • De Valence S, Tille J, Chaabane C, et al. Plasma treatment for improving cell biocompatibility of a biodegradable polymer scaffold for vascular graft applications. Eur J Pharm Biopharm. 2013;85:78–86.
  • Daranarong D, Chan RTH, Wanandy NS, et al. Electrospun polyhydroxybutyrate and poly (L-lactide-co-ε-caprolactone) composites as nanofibrous scaffolds. BioMed Research Int. 2014;2014:741408. doi: 10.1155/2014/741408.
  • Zhang W, Shi Y, Chen Y, et al. Multifunctional pluronic P123/F127 mixed polymeric micelles loaded with paclitaxel for the treatment of multidrug resistant tumors. Biomaterials. 2011;32:2894–2906.
  • Wei Z, Hao J, Yuan S, et al. Paclitaxel-loaded pluronic P123/F127 mixed polymeric micelles: Formulation, optimization and in vitro characterization. Int J Pharm. 2009;376:176–185.
  • Liu Z, Liu D, Wang L, et al. Docetaxel-loaded pluronic P123 polymeric micelles: in vitro and in vivo evaluation. Int J Mol Sci. 2011;12:1684–1696.
  • Hunt JA, Chen R, Van Veen T, et al. Hydrogels for tissue engineering and regenerative medicine. J Mater Chem B Mater Biol Med. 2014;2:5319–5338.
  • Wang Y, Wang T, Su Y, et al. Remarkable reduction of irreversible fouling and improvement of the permeation properties of poly (ether sulfone) ultrafiltration membranes by blending with pluronic F127. Langmuir. 2005;21:11856–11862.
  • Vasita R, Mani G, Agrawal CM, et al. Surface hydrophilization of electrospun PLGA micro-/nanofibers by blending. Polymer®F-108. Polymer. 2010;51:3706–3714.
  • Liu N, Pan J, Miao YE, et al. Electrospinning of poly (e-caprolactone-co-lactide)/pluronic blended scaffolds for skin tissue engineering. J Mater Sci. 2014;49:7253–7262.
  • Kurusu RS, Demarquette NR. Blending and morphology control to turn hydrophobic SEBS electrospun mats superhydrophilic. Langmuir. 2015;31:5495–5503.
  • Amjadian S, Seyedjafari E, Zeynali B, et al. The synergistic effect of nano-hydroxyapatite and dexamethasone in the fibrous delivery system of gelatin and poly(l-lactide) on the osteogenesis of mesenchymal stem cells. Int J Pharm. 2016;507:1–11.
  • Ramezanifard R, Seyedjafari E, Ardeshirylajimi A, et al. Biomimetic scaffolds containing nanofibers coated with willemite nanoparticles for improvement of stem cell osteogenesis. Mater Sci Eng C. 2016;62:398–406.
  • Rungswang W, Kotaki M, Shimojima T, et al. Role of surfactant on inducing specific microdomains of block copolymer: an example case from polystyrene-b-poly(ethylene-co-1-butene)-b-polystyrene (SEBS) electrospun thermoplastic-elastomer fiber containing polyethylene glycol lauryl ether (PGLE). Polymer. 2014;55:2068–2076.
  • Morent R, De Geyter N, Desmet T, et al. Plasma surface modification of biodegradable polymers: a review plasma process. Polymer. 2011;8:171–190.
  • Shao J, Chen C, Wang Y, et al. Applied surface science structure and surface nanomechanics of poly (l-lactide) from thermally induced phase separation process. Appl Surf Sci. 2012;258:6665–6671.
  • Su Y, Su Q, Liu W, et al. Controlled release of bone morphogenetic protein-2 and dexamethasone loaded in core–shell PLLACL – collagen fibers for use in bone tissue engineering. Acta Biomater. 2012;8:763–771.
  • Kim CH, Khil MS, Kim HY, et al. An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation. J Biomed Mater Res Part B Appl Biomater. 2006;78B:283–290.
  • Kai Z, Ying D, Guo-qiang C. Effects of surface morphology on the biocompatibility of polyhydroxyalkanoates. Biochem Eng J. 2003;16:115–123.
  • Declercq H, Van Den Vreken N, De Maeyer E, et al. Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: comparison of different isolation techniques and source. Biomaterials. 2004;25:757–768.
  • Xiao L, Wang B, Yang G, et al. Poly (lactic acid)-based: synthesis, modification and applications. Biomaterials. 2006;247–282.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.