1,734
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Andrographolide engineered gold nanoparticle to overcome drug resistant visceral leishmaniasis

, , , , , & show all
Pages 751-762 | Received 13 Sep 2017, Accepted 29 Jan 2018, Published online: 08 Feb 2018

References

  • Chappuis F, Sundar S, Hailu A, et al. Visceral leishmaniasis: what are the needs for diagnosis, treatment and control. Nat Rev Microbiol. 2007;5:873–882.
  • Desjeux P. Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis. 2004;27:305–318.
  • Lukes J, Mauricio IL, Schönian G, et al. Evolutionary and geographical history of the Leishmania donovani complex with a revision of current taxonomy. Proc Natl Acad Sci USA. 2007;104:9375–9380.
  • Maltezou HC. Drug resistance in visceral leishmaniasis. J Biomed Biotechnol. 2010;2010:1–8.
  • Croft SL, Sundar S, Fairlamb AH. Drug resistance in leishmaniasis. Clin Microbiol Rev. 2006;19:111–126.
  • García-Hernández R, Manzano JI, Castanys S, et al. Leishmania donovani develops resistance to drug combinations. PLoS Negl Trop Dis. 2012;6:e1974.
  • Croft SL, Coombs GH. Leishmaniasis – current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol. 2003;19:502–508.
  • Dreaden EC, Mackey MA, Huang XH, et al. Beating cancer in multiple ways using nanogold. Chem Soc Rev. 2011;40:3391–3404.
  • Li X, Xu H, Chen ZS, et al. Biosynthesis of nanoparticles by microorganism and their applications. J Nanomater. 2011;2011:1–16.
  • Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv. 2013;31:346–356.
  • Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011;13:2638–2650.
  • Castro L, Blazquez ML, Munoz JA, et al. Biosynthesis of gold nanowires using sugar beet pulp. Proc Biochem. 2011;46:1076–1082.
  • Chandran SP, Chaudhary M, Pasricha R, et al. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog. 2006;22:577–583.
  • Song JY, Jang HK, Kim BS. Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Proc Biochem. 2009;44:1133–1138.
  • Armendariz V, Herrera I, Peralta–Videa JR, et al. Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. J Nanopart Res. 2004;6:377–382. 
  • Sazgarnia A, Taheri AR, Soudmand S, et al. Antiparasitic effects of gold nanoparticles with microwave radiation on promastigots and amastigotes of Leishmania major. Int J Hyperthermia. 2013;29:79–86.
  • Sattarahmady N, Movahedpour A, Heli H, et al. Gold nanoparticles-based biosensing of Leishmania major kDNA genome: visual and spectrophotometric detections. Sens Actuators B. 2016;235:723–731.
  • Polonio T, Efferth T. Leishmaniasis: drug resistance and natural products (review). Int J Mol Med. 2008;22:277–286.
  • Ogungbe IV, Setzer WN. In-silico Leishmania target selectivity of antiparasitic terpenoids. Molecules. 2013;18:7761–7847.
  • Sinha J, Mukhopadhyay S, Das N, et al. Targeting of liposomal andrographolide to L. donovani-infected macrophages in vivo. Drug Deliv. 2000;7:209–213.
  • Roy P, Das S, Bera T, et al. Andrographolide nanoparticles in leishmaniasis: characterization and in vitro evaluations. Int J Nanomedicine. 2010;5:1113–1121.
  • Das S, Roy P, Mondal S, et al. One pot synthesis of gold nanoparticles and application in chemotherapy of wild and resistant type visceral leishmaniasis. Colloids Surf B Biointerfaces. 2013;107:27–34.
  • Debrabant A, Joshi MB, Pimenta PF, et al. Generation of Leishmania donovani axenic amastigotes: their growth and biological characteristics. Int J Parasitol. 2004;34:205–217.
  • Senero D, Lemesra JL. Axenically cultured amastigote forms as an in-vitro model for investigation of antileishmanial agents. Antimicrob Agents Chemother. 1997;41:972–976.
  • Ghosh S, Kar N, Bera T. Oleanolic acid loaded poly lactic co- glycolic acid- vitamin E TPGS nanoparticles for the treatment of Leishmania donovani infected visceral leishmaniasis. Int J Biol Macromol. 2016;93:961–970.
  • Callahan H, Kelley C, Peretra T, et al. Microtubule inhibitors: structure-activity analysis suggest rational models to identify potentially active compounds. Antimicrob Agents Chemother. 1996;40:947–952.
  • Mondal S, Roy P, Das S, et al. In vitro susceptibilities of wild and drug resistant Leishmania donovani amastigote stages to andrographolide nanoparticle: role of vitamin E derivative TPGS for nanoparticle efficacy. PLoS One. 2013;8:e81492.
  • Nwaka S, Hudson A. Innovative lead discovery strategies for tropical diseases. Nat Rev Drug Discov. 2006;5:941–955.
  • Nativo P, Prior IA, Brust M. Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano. 2008;2:1639–1644.
  • Kimling J, Maier M, Okenve B, et al. Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B. 2006;110:15700–15707.
  • Thakor AS, Jokerst J, Zavaleta C, et al. Gold nanoparticles: a revival in precious metal administration to patients. Nano Lett. 2011;11:4029–4036.
  • Perrault SD, Chan WC. Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50 − 200 nm. J Am Chem Soc. 2009;131:17042–17043.
  • Frens G. Controlled nucleation for the regulation of the particle size inmonodisperse gold suspensions. Nat Phys Sci. 1973;241:20–22.
  • Jana NR. Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles. Small. 2005;1:875–882.
  • Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104:293–346.
  • Akowuah GA, Zhari I, Norhayati I, et al. HPLC and HPTLC densitometric determination of andrographolides and antioxidant potential of Andrographis paniculata. J Food Comp Anal. 2006;19:118–126.
  • Suslick KS. Sonochemistry. Science. 1990;247:1439–1445.
  • Srinath BS, Ravishankar Rai V. Biosynthesis of highly monodispersed, spherical gold nanoparticles of size 4–10 nm from spent cultures of Klebsiella pneumonia. 3 Biotech. 2015;5:671–676.
  • Tam NC, Scott BM, Voicu BC, et al. Facile synthesis of Raman active phospholipid gold nanoparticles. Bioconjug Chem. 2010;21:2178–2182.
  • Bellamy LJ. 1980. The Infrared Spectra of Complex Molecules. New York (NY): Chapman and Hall publishing.
  • Cava MP, Chan WR, Haynes LJ, et al. The structure of andrographolide. Tetrahedron. 1962;18:397–403.
  • Jebali A, Kazemi B. Nano-based antileishmanial agents: a toxicological study on nanoparticles for future treatment of cutaneous leishmaniasis. Toxicol in Vitro. 2013;27:1896–1904.
  • Camargos HS, Moreira RA, Mendanha SA, et al. Terpenes increase the lipid dynamics in the leishmania plasma membrane at concentrations similar to their IC50 values. PLoS One. 2014;9:e104429.
  • Lala S, Pramanik S, Mukhopadhay S, et al. Harmine: evaluation of its antileishmanial properties in various delivery systems. J Drug Target. 2004;12:165–174.
  • Srivalli KMR, Lakshmi PK. Overview of P-glycoprotein inhibitors: a rational outlook. Braz J Pharm Sci. 2012;48:353–368.
  • Matsuda T, Kuroyanagi M, Sugiyama S, et al. Cell differentiation-inducing diterpenes from Andrographis paniculata Nees. Chem Pharm Bull. 1994;42:1216–1225.
  • Grumezescu AM. Nano- and Microscale Drug Delivery Systems: design and Fabrication. Amsterdam (The Netherlands): Elsevier. 2017.
  • Chithrani BD, Ghazani AA, Chan WC. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006;6:662–668.
  • Arnida, Janát-Amsbury MM, Ray A, et al. Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Eur J Pharm Biopharm. 2011;77:417–423.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.