4,464
Views
92
CrossRef citations to date
0
Altmetric
Research Article

In vitro and in vivo evaluation of electrospun cellulose acetate/gelatin/hydroxyapatite nanocomposite mats for wound dressing applications

, , , , , , & show all
Pages 964-974 | Received 21 Dec 2017, Accepted 08 Feb 2018, Published online: 19 Feb 2018

References

  • Robson MC, Steed DL, Franz MG. Wound healing: biologic features and approaches to maximize healing trajectories. Curr Probl Surg. 2001;38:72–140.
  • Szycher M, Lee SJ. Modern wound dressings: a systematic approach to wound healing. J Biomater Appl. 1992;7:142–213.
  • Singh MR, Saraf S, Vyas A, et al. Innovative approaches in wound healing: trajectory and advances. Artif Cells Nanomed Biotechnol. 2013;41:202–212.
  • Karahaliloglu Z, Kilicay E, Denkbas EB. Antibacterial chitosan/silk sericin 3D porous scaffolds as a wound dressing material. Artif Cells Nanomed Biotechnol. 2017;45:1172–1185.
  • Rahmani Del Bakhshayesh A, Annabi N, Khalilov R, et al. Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. Artif Cells Nanomed Biotechnol. 2017 [cited Jul 12]. DOI:https://doi.org/10.1080/21691401.2017.1349778
  • Dhivya S, Padma VV, Santhini E. Wound dressings – a review. Biomedicine. 2015;5:137–145.
  • Chen S, Liu B, Carlson MA, et al. Recent advances in electrospun nanofibers for wound healing. Nanomedicine. 2017;12:1335–1352.
  • Farzamfar S, Naseri-Nosar M, Samadian H, et al. Taurine-loaded poly (ε-caprolactone)/gelatin electrospun mat as a potential wound dressing material: in vitro and in vivo evaluation. J Bioact Compat Polym. 2017 [cited Nov 14]. DOI:https://doi.org/10.1177/0883911517737103
  • Liu M, Duan X-P, Li Y-M, et al. Electrospun nanofibers for wound healing. Mater Sci Eng: C. 2017;76:1413–1423.
  • Pilehvar-Soltanahmadi Y, Akbarzadeh A, Moazzez-Lalaklo N, et al. An update on clinical applications of electrospun nanofibers for skin bioengineering. Artif Cells Nanomed Biotechnol. 2016;44:1350–1364.
  • Chen X, Zhao R, Wang X, et al. Electrospun mupirocin loaded polyurethane fiber mats for anti-infection burn wound dressing application. J Biomater Sci Polym Ed. 2017;28:162–176.
  • Farzamfar S, Naseri-Nosar M, Vaez A, et al. Neural tissue regeneration by a gabapentin-loaded cellulose acetate/gelatin wet-electrospun scaffold. Cellulose. 2017 [cited Dec 21]. DOI:https://doi.org/10.1007/s10570-017-1632-z
  • Ahmadi-Aghkand F, Gholizadeh-Ghaleh Aziz S, Panahi Y, et al. Recent prospective of nanofiber scaffolds fabrication approaches for skin regeneration. Artif Cells Nanomed Biotechnol. 2016;44:1635–1641.
  • Aytimur A, Uslu İ. Promising materials for wound dressing: PVA/PAA/PVP electrospun nanofibers. Polym Plast Technol Eng. 2014;53:655–660.
  • Samadian H, Zakariaee SS, Adabi M, et al. Effective parameters on conductivity of mineralized carbon nanofibers: an investigation using artificial neural networks. RSC Adv. 2016;6:111908–111918.
  • Samadian H, Mobasheri H, Hasanpour S, et al. Electrospinning of polyacrylonitrile nanofibers and simulation of electric field via finite element method. Nanomed Res J. 2017;2:87–92.
  • Otsuka I, Njinang CN, Borsali R. Simple fabrication of cellulose nanofibers via electrospinning of dissolving pulp and tunicate. Cellulose. 2017;24:3281–3288.
  • Tungprapa S, Puangparn T, Weerasombut M, et al. Electrospun cellulose acetate fibers: effect of solvent system on morphology and fiber diameter. Cellulose. 2007;14:563–575.
  • Samadian H, Mobasheri H, Hasanpour S, et al. Needleless electrospinning system, an efficient platform to fabricate carbon nanofibers. J Nano Res. 2017;50:78–79.
  • Eatemadi A, Daraee H, Zarghami N, et al. Nanofiber: synthesis and biomedical applications. Artif Cells Nanomed Biotechnol. 2016;44:111–121.
  • Angammana CJ, Jayaram SH. Fundamentals of electrospinning and processing technologies. Particul Sci Technol. 2016;34:72–82.
  • Nosar MN, Salehi M, Ghorbani S, et al. Characterization of wet-electrospun cellulose acetate based 3-dimensional scaffolds for skin tissue engineering applications: influence of cellulose acetate concentration. Cellulose. 2016;23:3239–3248.
  • Ahn HR, Tak TM, Kwon Y-N. Preparation and applications of poly vinyl alcohol (PVA) modified cellulose acetate (CA) membranes for forward osmosis (FO) processes. Desalin Water Treat. 2015;53:1–7.
  • Frey MW. Electrospinning cellulose and cellulose derivatives. Polym Rev. 2008;48:378–391.
  • Liu X, Lin T, Gao Y, et al. Antimicrobial electrospun nanofibers of cellulose acetate and polyester urethane composite for wound dressing. J Biomed Mater Res. 2012;100:1556–1565.
  • Vatankhah E, Prabhakaran MP, Jin G, et al. Development of nanofibrous cellulose acetate/gelatin skin substitutes for variety wound treatment applications. J Biomater Appl. 2014;28:909–921.
  • Tong WY, bin Abdullah AYK, binti Rozman NAS, et al. Antimicrobial wound dressing film utilizing cellulose nanocrystal as drug delivery system for curcumin. Cellulose. 2018;25:631–638.
  • Wang C, Zhu F, Cui Y, et al. An easy-to-use wound dressing gelatin-bioactive nanoparticle gel and its preliminary in vivo study. J Mater Sci: Mater Med. 2017;28:10.
  • Chang W-H, Chang Y, Lai P-H, et al. A genipin-crosslinked gelatin membrane as wound-dressing material: in vitro and in vivo studies. J Biomater Sci Polym Ed. 2003;14:481–495.
  • Lansdown AB. Calcium: a potential central regulator in wound healing in the skin. Wound Repair Regen. 2002;10:271–285.
  • Kawai K, Larson BJ, Ishise H, et al. Calcium-based nanoparticles accelerate skin wound healing. PLoS One. 2011;6:e27106.
  • Magee AI, Lytton NA, Watt FM. Calcium-induced changes in cytoskeleton and motility of cultured human keratinocytes. Exp Cell Res. 1987;172:43–53.
  • Motta G. Calcium alginate topical wound dressings: a new dimension in the cost-effective treatment for exudating dermal wounds and pressure sores. Ostomy Wound Manage. 1989;25:52–56.
  • Dlugosz AA, Yuspa SH. Protein kinase C regulates keratinocyte transglutaminase (TGK) gene expression in cultured primary mouse epidermal keratinocytes induced to terminally differentiate by calcium. J Invest Dermatol. 1994;102:409–414.
  • Lee SH, Jiang S, Choi EH, et al. Iontophoresis itself on hairless mouse skin induces the loss of the epidermal calcium gradient without skin barrier impairment. J Invest Dermatol. 1998;111:39–43.
  • Trump BF, Berezesky IK, Sato T, et al. Cell calcium, cell injury and cell death. Environ Health Perspect. 1984;57:281.
  • Zhu W, Wang D, Xiong J, et al. Study on clinical application of nano-hydroxyapatite bone in bone defect repair. Artif Cells Nanomed Biotechnol. 2015;43:361–365.
  • Hernandez-Soria A, Yang X, Grosso MJ, et al. In vitro elution characteristics of antibiotic laden BoneSource™, hydroxyapatite bone cement. J Biomater Sci Polym Ed. 2013;24:797–806.
  • Zakaria SM, Sharif Zein SH, Othman MR, et al. Nanophase hydroxyapatite as a biomaterial in advanced hard tissue engineering: a review. Tissue Eng Part B: Rev. 2013;19:431–441.
  • Pepla E, Besharat LK, Palaia G, et al. Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: a review of literature. Ann Stomatol. 2014;5:108.
  • Prakasam M, Locs J, Salma-Ancane K, et al. Fabrication, properties and applications of dense hydroxyapatite: a review. Jfb. 2015;6:1099–1140.
  • Salehi M, Naseri-Nosar M, Ebrahimi-Barough S, et al. Regeneration of sciatic nerve crush injury by a hydroxyapatite nanoparticle-containing collagen type I hydrogel. J Physiol Sci. 2017 [cited Sep 6]. DOI:https://doi.org/10.1007/s12576-017-0564-6
  • Salehi M, Farzamfar S, Bastami F, et al. Fabrication and characterization of electrospun PLLA/collagen nanofibrous scaffold coated with chitosan to sustain release of aloe vera gel for skin tissue engineering. Biomed Eng Appl Basis Commun. 2016;28:1650035.
  • Arslan A, Şimşek M, Aldemir SD, et al. Honey-based PET or PET/chitosan fibrous wound dressings: effect of honey on electrospinning process. J Biomater Sci Polym Ed. 2014;25:999–1012.
  • Wienk I, Folkers B, van den Boomgaard T, et al. Critical factors in the determination of the pore size distribution of ultrafiltration membranes using the liquid displacement method. Sep Sci Technol. 1994;29:1433–1440.
  • Xu R, Xia H, He W, et al. Controlled water vapor transmission rate promotes wound-healing via wound re-epithelialization and contraction enhancement. Sci Rep. 2016;6:24596.
  • Oliveira HL, Da Rosa WL, Cuevas-Suárez CE, et al. Histological evaluation of bone repair with hydroxyapatite: a systematic review. Calcif Tissue Int. 2017;101:341–354.
  • Mhaske M, Kedar P, Bansode S. Tissue engineering: a review. Tissue Eng. 2017;2:280--285.
  • Hassan MI, Sultana N, Hamdan S. Bioactivity assessment of poly (ε-caprolactone)/hydroxyapatite electrospun fibers for bone tissue engineering application. J Nanomater. 2014;2014:8.
  • Xu X, Chen X, Liu A, et al. Electrospun poly (L-lactide)-grafted hydroxyapatite/poly (l-lactide) nanocomposite fibers. Eur Polym J. 2007;43:3187–3196.
  • Gao X, Song J, Ji P, et al. Polydopamine-templated hydroxyapatite reinforced polycaprolactone composite nanofibers with enhanced cytocompatibility and osteogenesis for bone tissue engineering. ACS Appl Mater Interfaces. 2016;8:3499–3515.
  • Fu S, Yang L, Fan J, et al. In vitro mineralization of hydroxyapatite on electrospun poly (ɛ-caprolactone)–poly (ethylene glycol)–poly (ɛ-caprolactone) fibrous scaffolds for tissue engineering application. Colloids Surf B: Biointerfaces. 2013;107:167–173.
  • Falanga V. Wound healing and its impairment in the diabetic foot. Lancet. 2005;366:1736–1743.
  • Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med. 1999;341:738–746.
  • Tonnesen MG, Feng X, Clark RA, editors. Angiogenesis in wound healing. Journal of Investigative Dermatology Symposium Proceedings; 2000: Elsevier.
  • Kaneko A, Hirai S, Tamada Y, et al. Evaluation of calcium phosphate-coated silk fabric produced by sol–gel processing as a wound cover material. Sen-i Gakkaishi. 2009;65:97–102.
  • Okabayashi R, Nakamura M, Okabayashi T, et al. Efficacy of polarized hydroxyapatite and silk fibroin composite dressing gel on epidermal recovery from full‐thickness skin wounds. J Biomed Mater Res. 2009;90:641–646.
  • Ramya JR, Arul KT, Sathiamurthi P, et al. Novel gamma irradiated agarose-gelatin-hydroxyapatite nanocomposite scaffolds for skin tissue regeneration. Ceramics Int. 2016;42:11045–11054.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.