1,848
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Antimicrobial properties of rosin acids-loaded nanoparticles against antibiotic-sensitive and antibiotic-resistant foodborne pathogens

ORCID Icon, , , , ORCID Icon, & show all
Pages 414-422 | Received 17 May 2018, Accepted 29 Jun 2018, Published online: 07 Dec 2018

References

  • San Feliciano A, Gordaliza M, Salinero MA, et al. Abietane acids: sources, biological activities, and therapeutic uses. Planta Med. 1993;59:485–490.
  • Wang J, Chen YP, Yao K, et al. Robust antimicrobial compounds and polymers derived from natural resin acids [10.1039/C1CC16432E]. Chem Commun. 2012;48:916–918.
  • Söderberg TA, Gref R, Holm S, et al. Antibacterial activity of rosin and resin acids in vitro. Scand J Plast Reconstr Surg Hand Surg. 1990;24:199–205. 1990/01/01.
  • Sipponen A, Laitinen K. Antimicrobial properties of natural coniferous rosin in the European Pharmacopoeia challenge test. Apmis. 2011;119:720–724.
  • Sipponen P, Sipponen A, Lohi J, et al. Natural coniferous resin lacquer in treatment of toenail onychomycosis: an observational study. Mycoses. 2013;56:289–296.
  • Sipponen A, Kuokkanen O, Tiihonen R, et al. Natural coniferous resin salve used to treat complicated surgical wounds: pilot clinical trial on healing and costs. Int J Dermatol. 2012;51:726–732.
  • Sipponen A, Peltola R, Jokinen JJ, et al. Effects of Norway spruce (Picea abies) resin on cell wall and cell membrane of Staphylococcus aureus. Ultrastruct. Pathol. 2009;33:128–135.
  • Sikkema J, De Bont J, Poolman B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev. 1995;59:201–222.
  • Peng G, Roberts JC. Solubility and toxicity of resin acids. Water Res. 2000;34:2779–2785.
  • Keeling CI, Bohlmann J. Diterpene resin acids in conifers. Phytochemistry. 2006;67:2415–2423.
  • Haapakorva E, Holmbom T, von Wright A. Novel aqueous oil-in-water emulsions containing extracts of natural coniferous resins are strongly antimicrobial against enterobacteria, staphylococci and yeasts, as well as on bacterial biofilms. J Appl Microbiol. 2018;124:136–143.
  • Söderberg TA, Johansson A, Gref R. Toxic effects of some conifer resin acids and tea tree oil on human epithelial and fibroblast cells. Toxicology. 1996;107:99–109.
  • Kettunen H, Vuorenmaa J, Rinttilä T, et al. Natural resin acid–enriched composition as a modulator of intestinal microbiota and performance enhancer in broiler chicken. Jaan. 2015;3:e2.
  • Kettunen H, Van Eerden E, Lipiński K, et al. Dietary resin acid composition as a performance enhancer for broiler chickens. Jaan. 2017;5:e3. doi: 10.1017/jan.2016.10.
  • Buyukozturk F, Benneyan JC, Carrier RL. Impact of emulsion-based drug delivery systems on intestinal permeability and drug release kinetics. J Control Release. 2010;142:22–30.
  • Prakash B, Kujur A, Yadav A, et al. Nanoencapsulation: an efficient technology to boost the antimicrobial potential of plant essential oils in food system. Food Control. 2018;89:1–11.
  • van Hoogevest P, Liu X, Fahr A. Drug delivery strategies for poorly water-soluble drugs: the industrial perspective. Expert Opin Drug Deliv. 2011;8:1481–1500.
  • Das Neves J, Amiji M, Bahia MF, et al. Assessing the physical–chemical properties and stability of dapivirine-loaded polymeric nanoparticles. Int J Pharm. 2013;456:307–314.
  • Araujo F, Shrestha N, Shahbazi M-A, et al. Microfluidic assembly of a multifunctional tailorable composite system designed for site specific combined oral delivery of peptide drugs. ACS Nano. 2015;9:8291–8302.
  • Maisel K, Ensign L, Reddy M, et al. Effect of surface chemistry on nanoparticle interaction with gastrointestinal mucus and distribution in the gastrointestinal tract following oral and rectal administration in the mouse. J Control Release. 2015;197:48–57.
  • Sadio A, Amaral AL, Nunes R, et al. A Mouse intra-intestinal infusion model and its application to the study of nanoparticle distribution [methods]. Front Physiol. 2016;2016-November-297:(579. doi: 10.3389/fphys.2016.00579. English.
  • Baelo A, Levato R, Julián E, et al. Disassembling bacterial extracellular matrix with DNase-coated nanoparticles to enhance antibiotic delivery in biofilm infections. J Control Release. 2015;209:150–158.
  • das Neves J, Michiels J, Ariën KK, et al. Polymeric nanoparticles affect the intracellular delivery, antiretroviral activity and cytotoxicity of the microbicide drug candidate dapivirine. Pharm Res. 2012;29:1468–1484.
  • European Committee for Antimicrobial Susceptibility Testing of the European Society for Clinical Microbiology. Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin Microbiol Infec. 2003;9:ix–xv.
  • Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3:163.
  • Sarker SD, Nahar L, Kumarasamy Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods. 2007;42:321–324.
  • du Toit EA, Rautenbach M. A sensitive standardised micro-gel well diffusion assay for the determination of antimicrobial activity. J Microbiol Methods. 2000;42:159–165.
  • Rautenbach M, Gerstner GD, Vlok NM, et al. Analyses of dose-response curves to compare the antimicrobial activity of model cationic α-helical peptides highlights the necessity for a minimum of two activity parameters. Anal Biochem. 2006;350:81–90.
  • Bootz A, Vogel V, Schubert D, et al. Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly(butyl cyanoacrylate) nanoparticles. Eur J Pharm Biopharm. 2004;57:369–375.
  • Savluchinske Feio S, Gigante B, Roseiro JC, et al. Antimicrobial activity of diterpene resin acid derivatives. J Microbiol Methods. 1999;35:201–206.
  • Savluchinske-Feio S, Curto MJM, Gigante B, et al. Antimicrobial activity of resin acid derivatives. Appl Microbiol Biotechnol. 2006;72:430–436.
  • Jamil B, Bokhari H, Imran M. Mechanism of action: how nano-antimicrobials act?. Curr Drug Targets. 2017;18:363–373.
  • Dillen K, Bridts C, Van der Veken P, et al. Adhesion of PLGA or Eudragit®/PLGA nanoparticles to Staphylococcus and Pseudomonas. Int J Pharm. 2008;349:234–240.
  • Nederberg F, Zhang Y, Tan JP, et al. Biodegradable nanostructures with selective lysis of microbial membranes. Nat Chem. 2011;3:409
  • Radovic-Moreno AF, Lu TK, Puscasu VA, et al. Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. ACS Nano. 2012;6:4279–4287.
  • Liu L, Xu K, Wang H. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat Nanotechnol. 2009;4:457.
  • Martins D, Costa FTM, Brocchi M, et al. Evaluation of the antibacterial activity of poly-(d,l-lactide-co-glycolide) nanoparticles containing violacein. J Nanopart Res. 2011;13:355.
  • Martins C, Sousa F, Araújo F, et al. Functionalizing PLGA and PLGA derivatives for drug delivery and tissue regeneration applications. Adv Healthcare Mater. 2018;7:1701035.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.