2,113
Views
31
CrossRef citations to date
0
Altmetric
Research Article

Development and characterization of folic acid-functionalized apoferritin as a delivery vehicle for epirubicin against MCF-7 breast cancer cells

, , , &
Pages 847-854 | Received 21 May 2018, Accepted 18 Aug 2018, Published online: 19 Nov 2018

References

  • Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.
  • Engblom C, Pfirschke C, Pittet MJ. The role of myeloid cells in cancer therapies. Nat Rev Cancer. 2016;16:447–462.
  • Karimi M, Zangabad PS, Mehdizadeh F, et al. Nanocaged platforms: modification, drug delivery and nanotoxicity. Opening synthetic cages to release the tiger. Nanoscale. 2017;9:1356–1392.
  • Schoonen L, van Hest JC. Functionalization of protein-based nanocages for drug delivery applications. Nanoscale. 2014;6:7124–7141.
  • Dostalova S, Vasickova K, Hynek D, et al. Apoferritin as an ubiquitous nanocarrier with excellent shelf life. Int J Nanomedicine. 2017;12:2265–2278.
  • Ruozi B, Veratti P, Vandelli MA, et al. Apoferritin nanocage as streptomycin drug reservoir: technological optimization of a new drug delivery system. Int J Pharm. 2017;518:281–288.
  • Zhai M, Wang Y, Zhang L, et al. Glioma targeting peptide modified apoferritin nanocage. Drug Deliv. 2018;25:1013–1024.
  • Zanzoni S, Pagano K, D'Onofrio M, et al. Unsaturated long-chain fatty acids are preferred ferritin ligands that enhance iron biomineralization. Chem Eur J. 2017;23:9879–9887.
  • Zhang L, Laug L, Mu¨nchgesang W, et al. Reducing stress on cells with apoferritin-encapsulated platinum nanoparticles. Nano Lett. 2010;10:219–223.
  • Ji XT, Huang L, Huang HQ. Construction of nanometer cisplatin core-ferritin (NCC-F) and proteomic analysis of gastric cancer cell apoptosis induced with cisplatin released from the NCC-F. J Proteomics. 2012;75:3145–3157.
  • Kim M, Rho Y, Jin KS, et al. pH-dependent structures of ferritin and apoferritin in solution: disassembly and reassembly. Biomacromolecules. 2011;12:1629–1640.
  • Dostalova S, Heger Z, Kudr J, et al. Apoferritin: protein nanocarrier for targeted delivery.In: Nano based drug delivery. Zagreb: IAPC Publishing; 2015. p. 217–233.
  • Yao H, Su L, Zeng M, et al. Construction of magnetic-carbon-quantum-dots-probe-labeled apoferritin nanocages for bioimaging and targeted therapy. IJN. 2016;11:4423–4438.
  • Falvo E, Tremante E, Fraioli R, et al. Antibody-drug conjugates: targeting melanoma with cisplatin encapsulated in protein-cage nanoparticles based on human ferritin. Nanoscale. 2013;5:12278–12285.
  • Gandioso A, Shaili E, Massaguer A, et al. An integrin-targeted photoactivatable Pt (IV) complex as a selective anticancer pro-drug: synthesis and photoactivation studies. Chem Commun. 2015;51:9169–9172.
  • Zhao J, Liu M, Zhang Y, et al. Apoferritin protein nanoparticles dually labeled with aptamer and horseradish peroxidase as a sensing probe for thrombin detection. Anal Chim Acta. 2013;759:53–60.
  • Chauhan G, Chopra V, Tyagi A, et al. “Gold nanoparticles composite-folic acid conjugated graphene oxide nanohybrids” for targeted chemo-thermal cancer ablation: in vitro screening and in vivo studies. Eur J Pharm Sci. 2017;96:351–361.
  • Jurado R, Castello F, Bondia P, et al. Apoferritin fibers: a new template for 1D fluorescent hybrid nanostructures. Nanoscale. 2016;8:9648–9656.
  • Raschi E, Vasina V, Ursino MG, et al. Anticancer drugs and cardiotoxicity: insights and perspectives in the era of targeted therapy. Pharmacol Ther. 2010;125:196–218.
  • McGowan JV, Chung R, Maulik A, et al. Anthracycline chemotherapy and cardiotoxicity. Cardiovasc Drugs Ther. 2017;31:63–75.
  • Khasraw M, Bell R, Dang C. Epirubicin: is it like doxorubicin in breast cancer? A clinical review. Breast. 2012;21:142–149.
  • Yang J, Zhang R, Radford DC, et al. FRET-trackable biodegradable HPMA copolymer–epirubicin conjugates for ovarian carcinoma therapy. J Control Release. 2015;218:36–44.
  • Chen Z, Zhai M, Xie X, et al. Apoferritin nanocage for brain targeted doxorubicin delivery. Mol Pharm. 2017;14:3087–3097.
  • Dostalova S, Cerna T, Hynek D, et al. Site-directed conjugation of antibodies to apoferritin nanocarrier for targeted drug delivery to prostate cancer cells. ACS Appl Mater Interfaces. 2016;8:14430–14441.
  • Lin X, Xie J, Niu G, et al. Chimeric ferritin nanocages for multiple function loading and multimodal imaging. Nano Lett. 2011;11:814–819.
  • Notaro S, Reimer D, Fiegl H, et al. Evaluation of folate receptor 1 (FOLR1) mRNA expression, its specific promoter methylation and global DNA hypomethylation in type I and type II ovarian cancers. BMC Cancer. 2016;16:589.
  • Marshalek JP, Sheeran PS, Ingram P, et al. Intracellular delivery and ultrasonic activation of folate receptor-targeted phase-change contrast agents in breast cancer cells in vitro. J Control Release. 2016;243:69–77.
  • Gupta A, Kaur CD, Saraf S, et al. Targeting of herbal bioactives through folate receptors: a novel concept to enhance intracellular drug delivery in cancer therapy. J Receptor Signal Transduction Res. 2017;37:314–323.
  • Islam MS, Haque P, Rashid TU, et al. Core-shell drug carrier from folate conjugated chitosan obtained from prawn shell for targeted doxorubicin delivery. J Mater Sci: Mater Med. 2017;28:55.
  • Zhou J, Chen S, Sun C, et al. A “submunition” dual–drug system based on smart hollow NaYF4/apoferritin nanocage for upconversion imaging. RSC Adv. 2016;6:33443–33454.
  • Ren Y, Wong SM, Lim L-Y. Folic acid-conjugated protein cages of a plant virus: a novel delivery platform for doxorubicin. Bioconjug Chem. 2007;18:836–843.
  • Hajian R, Ekhlasi E, Daneshvar R. Spectroscopic and electrochemical studies on the interaction of epirubicin with fish sperm DNA. J Chem. 2012;9:1587–1598.
  • Kashanian S, Rostami E. PEG-stearate coated solid lipid nanoparticles as levothyroxine carriers for oral administration. J Nanopart Res. 2014;16:2293.
  • Motiei M, Kashanian S, Taherpour AA. Hydrophobic amino acids grafted onto chitosan: a novel amphiphilic chitosan nanocarrier for hydrophobic drugs. Drug Dev Ind Pharm. 2017;43:1–11.
  • Grigoryan K, Shilajyan H. Fluorescence 2D and 3D spectra analysis of tryptophan, tyrosine and phenylalanine. Chem Biol. 2017;51:3–7.
  • Kim T-H, Oh J-M. Dual nutraceutical nanohybrids of folic acid and calcium containing layered double hydroxides. J Solid State Chem. 2016;233:125–132.
  • Kudr J, Nejdl L, Skalickova S, et al. Use of nucleic acids anchor system to reveal apoferritin modification by cadmium telluride nanoparticles. J Mater Chem B. 2015;3:2109–2118.
  • Kashanian S, Abasi Tarighat F, Rafipour R, et al. Biomimetic synthesis and characterization of cobalt nanoparticles using apoferritin, and investigation of direct electron transfer of Co(NPs)-ferritin at modified glassy carbon electrode to design a novel nanobiosensor. Mol Biol Rep. 2012;39:8793–8802.
  • Weichel M, Bassarab S, Garidel P. Probing thermal stability of MAbs by intrinsic tryptophan fluorescence. BioProcess Int. 2008;6:42–52.
  • Tiwari V, Tiwari M. Investigation of surface tryptophan of protein by selective excitation at 305 nm. JBPC. 2015;06:87.
  • Liang L, Subirade M. β-Lactoglobulin/folic acid complexes: formation, characterization, and biological implication. J Phys Chem B. 2010;114:6707–6712.
  • Swift J, Wehbi WA, Kelly BD, et al. Design of functional ferritin-like proteins with hydrophobic cavities. J Am Chem Soc. 2006;128:6611–6619.
  • Liu X, Wei W, Wang C, et al. Apoferritin-camouflaged Pt nanoparticles: surface effects on cellular uptake and cytotoxicity. J Mater Chem. 2011;21:7105.
  • Chen L, Bai G, Yang R, et al. Encapsulation of β-carotene within ferritin nanocages greatly increases its water-solubility and thermal stability. Food Chem. 2014;149:307–312.
  • Zhen Z, Tang W, Chen H, et al. RGD-modified apoferritin nanoparticles for efficient drug delivery to tumors. ACS Nano. 2013;7:4830–4837.
  • Dostalova S, Vazzana M, Vaculovicova M, et al. Interaction of nanocarrier apoferritin with cytotoxic drug molecules. J Metallom Nanotechnol. 2015;3:71–80.
  • Shen Y, Jin E, Zhang B, et al. Prodrugs forming high drug loading multifunctional nanocapsules for intracellular cancer drug delivery. J Am Chem Soc. 2010;132:4259–4265.
  • Zhou J, Yao H, Meng L, et al. A hollow NaGdF4/AFn nanosystem based on “Relay Race: release for therapy. ChemMedChem. 2017;12:1191–1200.
  • Yordanov G, Skrobanska R, Evangelatov A. Entrapment of epirubicin in poly(butyl cyanoacrylate) colloidal nanospheres by nanoprecipitation: formulation development and in vitro studies on cancer cell lines. Colloids Surf B Biointerfaces. 2012;92:98–105.
  • Zhang S, Zang J, Chen H, et al. The size flexibility of ferritin nanocage opens a new way to prepare nanomaterials. Small. 2017;13:1701045.
  • Kuruppu AI, Zhang L, Collins H, et al. An apoferritin-based drug delivery system for the tyrosine kinase inhibitor gefitinib. Adv Healthcare Mater. 2015;4:2816–2821.
  • Jurado R, Frączek P, Droetto M, et al. Apomaghemite as a doxorubicin carrier for anticancer drug delivery. J Inorg Biochem. 2016;157:46–51.
  • Elmas SNK, Guzel R, Say MG, et al. Ferritin based bionanocages as novel biomemory device concept. Biosens Bioelectron. 2018;103:19–25.
  • Massner C, Sigmund F, Pettinger S, et al. Genetically controlled lysosomal entrapment of superparamagnetic ferritin for multimodal and multiscale imaging and actuation with low tissue attenuation. Adv Funct Mater. 2018;28:1706793.
  • Ferraro G, Petruk G, Maiore L, et al. Caged noble metals: encapsulation of a cytotoxic platinum (II)–gold (I) compound within the ferritin nanocage. Int J Biol Macromol. 2018;115:1116–1121

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.