1,369
Views
7
CrossRef citations to date
0
Altmetric
Research Article

The use of a 2-aminopurine-containing split G-quadruplex for sequence-specific DNA detection

, , , , , , , , , , & ORCID Icon show all
Pages 950-955 | Received 16 Jul 2018, Accepted 01 Sep 2018, Published online: 12 Oct 2018

References

  • Keskin F, Ciftci S, Keceli SA, et al. Comparison of culture and real-time polymerase chain reaction methods for detection of Mycoplasma hominis in amniotic fluids sample. Niger J Chin Pract. 2018;21:1127–1131.
  • Das A, Kumar B, Chakravati S, et al. Rapid visual isothermal nucleic acid-based detection assay of Brucella species by polymerase spiral reaction. J Appl Microbiol. 2018;125:646–654.
  • Baliga S, Murphy C, Sharon L, et al. Rapid method for detecting and differentiating Mycobacterium tuberculosis complex and non-tuberculous mycobacteria in sputum by fluorescence in situ hybridization with DNA probes. Int J Infect Dis. 2018;75:1–7.
  • Xu W, Chan KM, Kool ET. Fluorescent nucleobases as tools for studying DNA and RNA. Nat Chem. 2017;9:1043–1055.
  • Jiang X, Zhang H, Wu J, et al. G-quadruplex DNA biosensor for sensitive visible detection of genetically modified food. Talanta. 2014;128:445–449.
  • Li T, Fu R, Park HG. Pyrrolo-dC based fluorescent aptasensors for the molecular recognition of targets. Chem Commun (Camb). 2010;46:3271–3273.
  • Rachofsky EL, Osman R, Ross JB. Probing structure and dynamics of DNA with 2-aminopurine: effects of local environment on fluorescence. Biochemistry. 2001;40:946–956.
  • O'Neil MA, Barton JK. 2-Aminopurine: a probe of structural dynamics and charge transfer in DNA and DNA:RNA hybrids. J Am Chem Soc. 2002;124:13053–13066.
  • Liu C, Lv S, Gong H, et al. 2-Aminopurine probe in combination with catalyzed hairpin assembly signal amplification for simple and sensitive detection of microRNA. Talanta. 2017;174:336–340.
  • Zhou W, Ding J, Liu J. A highly specific sodium aptamer probed by 2-aminopurine for robust Na+ sensing. Nucleic Acids Res. 2016;44:10377–10385.
  • Liao R, He K, Chen C, et al. Double-strand displacement biosensor and quencher-free fluorescence strategy for rapid detection of microRNA. Anal Chem. 2016;88:4254–4258.
  • He Y, Wang C, Zhao Q, et al. Facile and sensitive fluorescence sensing of alkaline phosphatase activity using NMM/G-quadruplex. Talanta. 2017;172:171–175.
  • Li T, Wang E, Dong S. Lead(II)-induced allosteric G-quadruplex DNAzyme as a colorimetric and chemiluminescence sensor for highly sensitive and selective Pb2+ detection. Anal Chem. 2010;82:1515–1520.
  • Bhasikuttan AC, Mohanty J. Targeting G-quadruplex structures with extrinsic fluorogenic dyes: promising fluorescence sensors. Chem Commun. 2015;51:7581–7597.
  • Cao Q, Li Y, Freisinger E, et al. G-quadruplex DNA targeted metal complexes acting as potential anticancer drugs. Inorg Chem Front. 2017;4:10–32.
  • Darius AKL, Ling NJ, Mahesh U. Visual detection of DNA from salmonella and mycobacterium using split DNAzymes. Mol Biosyst. 2010;6:792–794.
  • Zhu J, Zhang L, Dong S, et al. How to split a G-quadruplex for DNA detection: new insight into the formation of DNA split G-quadruplex. Chem Sci. 2015;6:4822–4827.
  • Zheng Z, Han J, Pang W, et al. G-quadruplex DNAzyme molecular beacon for amplified colorimetric biosensing of Pseudostellaria heterophylla. Sensors. 2013;13:1064–1075.
  • Lee CY, Park KS, Park HG. A fluorescent G-quadruplex probe for the assay of base excision repair enzyme activity. Chem Commun (Camb). 2015;51:13744–13747.
  • Zhou W, Ding J, Liu J. 2-Aminopurine-modified DNA homopolymers for robust and sensitive detection of mercury and silver. Biosens Bioelectron. 2017;87:171–177.
  • Li S, Liu C, Gong H, et al. Simple G-quadruplex-based 2-aminopurine fluorescence probe for highly sensitive and amplified detection of microRNA-21. Talanta. 2018;178:974–979.
  • Peng P, Du Y, Liu S, et al. Probing the propeller-like loops of DNA G-quadruplexes with looped-out 2-aminopurine for label-free switchable molecular sensing. Analyst. 2018;143:3814–3820.
  • Kankia BI. Self-dissociative primers for nucleic acid amplification and detection based on DNA quadruplexes with intrinsic fluorescence. Anal Biochem. 2011;409:59–65.
  • Kong DM, Wang N, Guo XX, et al. 'Turn-on' detection of Hg2+ ion using a peroxidase-like split G-quadruplex-hemin DNAzyme. Analyst. 2010;135:545–549.
  • Yang X, Li T, Li B, et al. Potassium-sensitive G-quadruplex DNA for sensitive visible potassium detection. Analyst. 2010;135:71–75.
  • Chen H, Sun H, Zhang X, et al. A supramolecular probe for colorimetric detection of Pb2+ based on recognition of G-quadruplex. RSC Adv. 2015;5:1730–1734.
  • Xiao HJ, Hak HC, Kong DM, et al. Sequence-specific detection of nucleic acids utilizing isothermal enrichment of G-quadruplex DNAzymes. Anal Chim Acta. 2012;729:67–72.
  • Park Y, Lee CY, Kang S, et al. Universal, colorimetric microRNA detection strategy based on target-catalyzed toehold-mediated strand displacement reaction. Nanotechnology. 2018;29:085501.
  • Kim H, Kang S, Park KS, et al. Enzyme-free and label-free miRNA detection based on target-triggered catalytic hairpin assembly and fluorescence enhancement of DNA-silver nanoclusters. Sens Actuator B-Chem. 2018;260:140–145.
  • Li T, Wang E, Dong S. Parallel G-quadruplex-specific fluorescent probe for monitoring DNA structural changes and label-free detection of potassium ion. Anal Chem. 2010;82:7576–7580.
  • Wu H, Liu Y, Wang H, et al. Label-free and enzyme-free colorimetric detection of microRNA by catalyzed hairpin assembly coupled with hybridization chain reaction. Biosens Bioelectron. 2016;81:303–308.
  • Zhang Y, Li Z, Cheng Y, et al. Colorimetric detection of microRNA and RNase H activity in homogeneous solution with cationic polythiophene derivative. Chem Commun. 2009;22:3172–3174.
  • Huang J, Yang X, He X, et al. A new strategy for designing a graphene oxide-based DNA hairpin probe: fluorescence upon switching the orientation of the sticky end. Chem Commun (Camb). 2013;49:9827–9829.
  • Jung YL, Lee CY, Park JH, et al. A signal-on, colorimetric determination of deoxyribonuclease I activity utilizing the photoinduced synthesis of gold nanoparticles. Nanoscale 2018;10:4339–4343.
  • Park KS. Nucleic acid aptamer-based methods for diagnosis of Infections. Biosens Bioelectron. 2018;102:179–188.
  • Lee CY, Park KS, Park HG. A simple, sensitive, and label-free assay for alkaline phosphatase activity based on target-promoted exponential strand displacement amplification. Sens Actuator B-Chem. 2018;262:1001–1005.
  • Jiang T, Ren S, Zhou C. Role of circulating-tumor DNA analysis in non-small cell lung cancer. Lung Cancer. 2015;90:128–134.
  • Bennett CW, Berchem G, Kim YJ, et al. Cell-free DNA and next-generation sequencing in the service of personalized medicine for lung cancer. Oncotarget 2016;7:71013–71035.
  • Duman M, Çağlayan Demirel G, et al. Detection of Mycobacterium tuberculosis complex using surface plasmon resonance based sensors carrying self-assembled nano-overlayers of probe oligonucleotide. Sens Lett. 2009;7:535–542.
  • Wang N, Kong DM, Shen HX. Amplification of G-quadruplex DNAzymes using PCR-like temperature cycles for specific nucleic acid and single nucleotide polymorphism detection. Chem Commun. 2011;47:1728–1730.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.