1,997
Views
41
CrossRef citations to date
0
Altmetric
Original Articles

Immobilization of horseradish peroxidase on PMMA nanofibers incorporated with nanodiamond

, , , , , , & show all
Pages 973-981 | Received 07 Jul 2018, Accepted 01 Sep 2018, Published online: 12 Oct 2018

References

  • Eliane PC, Maria Jose AS, Manuela K, et al. Current status and trends in enzymatic nanoimmobilization. J Mol Cataly B: Enzym. 2014;99:56–67.
  • Hanefeld U, Cao L, Magner E. Enzyme immobilisation: fundamentals and application. Chem Soc Rev. 2013;42:6211–6212.
  • Villeneuve P, Muderhwa JM, Graille J, et al. Customizing and molecular biological approaches. J Mol Cataly B: enzym. 2000;9:113–148.
  • Krueger A, Stegk J, Liang Y, et al. Biotinylated nanodiamond: functionalization of detonation diamond. Langmuir. 2008;24:4200–4204.
  • Wei L, Zhang W, Lu H, et al. Immobilization of enzyme on detonation nanodiamond for highly efficient proteolysis. Talanta. 2010;80:1298–1304.
  • Nguyen TTB, Chang HC, Wu VWK. Adsorption and hydrolytic activity of lysozyme on diamond nanocrystallites. Diamond Relat Mater. 2007;16:872–876.
  • Cheng J, Yu SM, Zuo P. Horseradish peroxidase immobilized on aluminum-pillared interlayered clay for the catalytic oxidation of phenolic wastewater. Water Res. 2006;40:283–290.
  • Van Haandel MJH, Saraber FCE, Boersma MG, et al. Characterization of different commercial soybean peroxidase preparations and use of the enzyme for N-demethylation of methyl N-methylanthranilate to produce the food flavor methylanthranilate. J Agric Food Chem. 2000;48:1949–1954.
  • Vojinović V, Carvalho RH, Lemos F, et al. Kinetics of soluble and immobilized horseradish peroxidase-mediated oxidation of phenolic compounds. Biochem Eng J. 2007;35:126–135.
  • Sun M, Song G, Liu J, et al. In situ controllable synthesis of cotton-like polyaniline nanostructures for a H2O2 sensor using an embedded three-electrode microfluidic chip. RSC Adv. 2017;7:13637–13642.
  • Mohamed SA, Abulnaja KO, Ads AS, et al. Characterisation of an anionic peroxidase from horseradish cv. Balady. Food Chem. 2011;128:725–730.
  • Yuan ZY, Jiang TJ. Handbook of food enzymology. In: J.R. Whitaker, A. Voragen, Wong D.W.S, editors. New York: Marcel Dekker Inc.; 2003.
  • Cao L. Immobilised enzymes: science or art?. Curr Opin Chem Biol. 2005;9:217–226.
  • Brady D, Jordaan J. Advances in enzyme immobilisation. Biotechnol Lett. 2009;31:1639–1650.
  • RSC. Nanoscience & nanotechnology No. 31 nanodiamond. In: O. Williams, editor. CHAPTER 3 the Chemistry of Nanodiamond, ANKE KRUEGER. The Royal Society of Chemistry Publishing: Cambridge; 2014. p. 49–88.
  • Rouhani P, Govindaraju N, Iyer JK, et al. Purification and functionalization of nanodiamond to serve as a platform for amoxicillin delivery. Mater Sci Eng C Mater Biol Appl. 2016;63:323–332.
  • Sun Y, Yang Q, Wang H. Synthesis and characterization of nanodiamond reinforced chitosan for bone tissue engineering. Jfb. 2016;7:27.
  • Hussein MA, El-Shishtawy RM, Abu-Zied BM, et al. The impact of cross-linking degree on the thermal and texture behavior of poly (methyl methacrylate). J Therm Anal Calorim. 2016;124:709–717.
  • Xu Q, Mao C, Liu NN, et al. Immobilization of horseradish peroxidase on O-carboxymethylated chitosan/sol–gel matrix. React Funct Polym. 2006;66:863–870.
  • Welinder KG. Covalent structure of the glycoprotein horseradish peroxidase (EC 1.11.1.7)). FEBS Lett. 1976;72:19–23.
  • Wang ZG, Xu ZK, Wan LS, et al. Nanofibrous membranes containing carbon nanotubes: electrospun for redox enzyme immobilization. Macromol Rapid Commun. 2006;27:516–521.
  • Wang ZG, Ke BB, Xu ZK. Covalent immobilization of redox enzyme on electrospun nonwoven poly(acrylonitrile-co-acrylic acid) nanofiber mesh filled with carbon nanotubes: a comprehensive study. Biotechnol Bioeng. 2007;97:708–720.
  • Jamal F, Qidwai T, Singh D, et al. Biocatalytic activity of immobilized pointed gourd (Trichosanthes dioica) peroxidase–concanavalin A complex on calcium alginate pectin gel. J Mol Cataly B: Enzym. 2012;74:125–131.
  • Mohamed SA, Al-Ghamdi SS, El-Shishtawy RM. Immobilization of horseradish peroxidase on amidoximated acrylic polymer activated by cyanuric chloride. Int J Biol Macromol. 2016;91:663–670.
  • Mohamed SA, Darwish AA, El-Shishtawy RM. Immobilization of horseradish peroxidase on activated wool. Process Biochem. 2013;48:649–655.
  • Hou H, Ge JJ, Zeng J, et al. Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes. Chem Mater. 2005;17:967–973.
  • Wu C-C, Gottfried JL, Pesce-Rodriguez RA. On the structure and impurities of a nominally homologous set of detonation nanodiamonds. Diamond Rel Mater. 2017;76:157–170.
  • Musthapa SM, Akhtar S, Khan AA, et al. An economical, simple and high yield procedure for the immobilization/stabilization of peroxidases from turnip roots. Scie Ind Res. 2004;63:540–547.
  • Qiu HJ, Xu CX, Huang XR, et al. Immobilization of laccase on nanoporous gold: comparative studies on the immobilization strategies and the particle size effects. J Phys Chem C. 2009;113:2521–2525.
  • Monier M, Ayad DM, Wei Y, et al. Immobilization of horseradish peroxidase on modified chitosan beads. Int J Biol Macromol. 2010;46:324–330.
  • Silva TM, Santiago PO, Purcena LA, et al. Study of the cashew gum polysaccharide for the horseradish peroxidase immobilization – structural characteristics, stability and recovery. Mater Sci Eng C. 2010;30:526–530.
  • Bayramoğlu G, Karakışla M, Altıntaş B, et al. Polyaniline grafted polyacylonitrile conductive composite fibers for reversible immobilization of enzymes: stability and catalytic properties of invertase. Process Biochem. 2009;44:880–885.
  • Ernest V, Gajalakshmi S, Mukherjee A, et al. Enhanced activity of lysozyme-AgNP conjugate with synergic antibacterial effect without damaging the catalytic site of lysozyme. Artif Cells Nanomed Biotechnol. 2014;42:336–343.
  • Matto M, Satar R, Husain Q. Application of calcium alginate-starch entrapped bitter gourd (Momordica charantia) peroxidase for the removal of colored compounds from a textile effluent in batch as well as in continuous reactor. Appl Biochem Biotechnol. 2009;158:512–523.
  • Mohamed SA, Aly AS, Mohamed TM, et al. Immobilization of horseradish peroxidase on nonwoven polyester fabric coated with chitosan. Appl Biochem Biotechnol. 2008;144:169–179.
  • Querol E, Perez-Pons JA, Mozo-Villarias A. Analysis of protein conformational characteristics related to thermostability. Protein Eng Des Sel. 1996;9:265–271.
  • Karim Z, Adnan R, Husain Q. A β-cyclodextrin–chitosan complex as the immobilization matrix for horseradish peroxidase and its application for the removal of azo dyes from textile effluent. Int Biodeterior. 2012;72:10–17.
  • Qiu H, Lu L, Huang X, et al. Immobilization of horseradish peroxidase on nanoporous copper and its potential applications. Biores Technol. 2010;101:9415–9420.
  • Valerio SG, Alves JS, Klein MP, et al. High operational stability of invertase from Saccharomyces cerevisiae immobilized on chitosan nanoparticles. Carbohyd Polym. 2013;92:462–468.
  • Mielgo I, Palma C, Guisan JM, et al. Covalent immobilization of manganese peroxidase (MnP) from Phanerochaetechrysosporium and Bjerkandera sp. BOS55. Enzyme Microb Technol. 2003;32:769–775.
  • Einollahi N, Abbasi S, Dashti N, et al. Effect of mercuric chloride on kinetic properties of horseradish peroxidase. Iran J Pub Health. 2006;35:49–56.
  • Keyhani J, Keyhani E, Einollahi N, et al. Heterogeneous inhibition of horseradish peroxidase activity by cadmium. Biochim Biophys Acta (BBA)-General Subjects. 2003;1621:140–148.
  • Matto M, Husain Q. Entrapment of porous and stable concanavalin A–peroxidase complex into hybrid calcium alginate–pectin gel. J Chem Technol Biotechnol. 2006;81:1316–1323.
  • Akhtar S, Khan AA, Husain QJ. Simultaneous purification and immobilization of bitter gourd (Momordica charantia) peroxidases on bioaffinity support. J Chem Technol Biotechnol. 2005;80:198–205.
  • Kulshrestha Y, Husain Q. Direct immobilization of peroxidase on DEAE cellulose from ammonium sulphate fractionated proteins of bitter gourd (Momordica charantia). Enzyme Microb Technol. 2006;38:470–477.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.