2,142
Views
11
CrossRef citations to date
0
Altmetric
Article

The effect of π-Conjugation on the self-assembly of micelles and controlled cargo release

ORCID Icon, , , , , , , & ORCID Icon show all
Pages 525-532 | Received 20 Sep 2019, Accepted 28 Nov 2019, Published online: 09 Feb 2020

References

  • Lee S, Oh S, Lee J, et al. Stimulus-responsive azobenzene supramolecules: fibers, gels, and hollow spheres. Langmuir. 2013;29(19):5869–5877.
  • Dai J, Han S, Ju F, et al. Preparation and evaluation of tumour microenvironment response multistage nanoparticles for epirubicin delivery and deep tumour penetration. Artif Cells Nanomed Biotechnol. 2018;46(sup2):860–873.
  • Mai Y, Eisenberg A. Self-assembly of block copolymers. Chem Soc Rev. 2012;41(18):5969–5985.
  • Ge R, Cao J, Chi J, et al. NIR-guided dendritic nanoplatform for improving antitumor efficacy by combining chemo-phototherapy. IJN. 2019;14:4931–4947.
  • Wang H, Yang C, Wang L, et al. Self-assembled nanospheres as a novel delivery system for taxol: a molecular hydrogel with nanosphere morphology. Chem Commun. 2011;47(15):4439–4441.
  • Yoo J, Doshi N, Mitragotri S. Adaptive micro and nanoparticles: temporal control over carrier properties to facilitate drug delivery. Adv Drug Deliv Rev. 2011;63(14–15):1247–1256.
  • Wang C, Chen Q, Wang Z, et al. An enzyme-responsive polymeric superamphiphile. Angew Chem Int Ed. 2010;49(46):8612–8615.
  • Leenders CMA, Albertazzi L, Mes T, et al. Supramolecular polymerization in water harnessing both hydrophobic effects and hydrogen bond formation. Chem Commun. 2013;49(19):1963–1965.
  • Tyagi R, Malhotra S, Thünemann AF, et al. Investigations of host–guest interactions with shape-persistent nonionic dendritic micelles. J Phys Chem C. 2013;117(23):12307–12317.
  • Liang Y, Huo Q, Lu W, et al. Fluorescence resonance energy transfer visualization of molecular delivery from polymeric micelles. J Biomed Nanotechnol. 2018;14(7):1308–1316.
  • Song B, Wang Z, Chen S, et al. The introduction of π–π stacking moieties for fabricating stable micellar structure: formation and dynamics of disklike micelles. Angew Chem. 2005;117(30):4809–4813.
  • D’Emanuele A, Attwood D. Dendrimer–drug interactions. Adv Drug Deliv Rev. 2005;57:2147–2162.
  • Bickerton S, Jiwpanich S, Thayumanavan S. Interconnected roles of scaffold hydrophobicity, drug loading, and encapsulation stability in polymeric nanocarriers. Mol Pharmaceutics. 2012;9(12):3569–3578.
  • Dong X, Guo X, Liu G, et al. When self-assembly meets topology: an enhanced micelle stability. Chem Commun. 2017;53(27):3822–3825.
  • Huo Q, Liang Y, Lu W, et al. Integrated metalloproteinase, pH and glutathione responsive prodrug-based nanomedicine for efficient target chemotherapy. J Biomed Nanotechnol. 2019;15(8):1673–1687.
  • Rajamalli P, Prasad E. Tunable morphology and mesophase formation by naphthalene-containing poly(aryl ether) dendron-based low-molecular-weight fluorescent gels. Langmuir. 2013;29(5):1609–1617.
  • Rajamalli P, Prasad E. Low molecular weight fluorescent organogel for fluoride ion detection. Org Lett. 2011;13(14):3714–3717.
  • Agarwal C, Prasad E. Detection of Cu(ii) and NO by ‘on-off’ aggregation in poly(aryl ether) dendron derivatives. New J Chem. 2012;36(9):1859–1865.
  • von Delius M, Geertsema EM, Leigh DA, et al. Synthesis and solid-state structure of a hydrazone-disulfide macrocycle and its dynamic covalent ring-opening under acidic and basic conditions. Org Biomol Chem. 2010;8(20):4617–4624.
  • Charkoudian LK, Pham DM, Franz KJ. A pro-chelator triggered by hydrogen peroxide inhibits iron-promoted hydroxyl radical formation. J Am Chem Soc. 2006;128(38):12424–12425.
  • Kunitake T, Okahata Y, Shimomura M, et al. Formation of stable bilayer assemblies in water from single-chain amphiphiles. Relationship between the amphiphile structure and the aggregate morphology. J Am Chem Soc. 1981;103(18):5401–5413.
  • Shen Y, Jin E, Zhang B, et al. Prodrugs forming high drug loading multifunctional nanocapsules for intracellular cancer drug delivery. J Am Chem Soc. 2010;132(12):4259–4265.
  • Wang J, Sun X, Mao W, et al. Tumor redox heterogeneity-responsive prodrug nanocapsules for cancer chemotherapy. Adv Mater. 2013;25(27):3670–3676.
  • Bolla MA, Tiburcio J, Loeb SJ. Characterization of a slippage stopper for the 1,2-bis(pyridinium)ethane–[24]crown-8 ether [2]pseudorotaxane motif. Tetrahedron. 2008;64(36):8423–8427.
  • Greenland BW, Bird MB, Burattini S, et al. Mutual binding of polymer end-groups by complementary [small pi]-[small pi]-stacking: a molecular “Roman Handshake. Chem Commun. 2013;49(5):454–456.
  • Kar T, Debnath S, Das D, et al. Organogelation and hydrogelation of low-molecular-weight amphiphilic dipeptides: pH responsiveness in phase-selective gelation and dye removal. Langmuir. 2009;25(15):8639–8648.
  • Li Z, Zhang Z, Liu KL, et al. Biodegradable hyperbranched amphiphilic polyurethane multiblock copolymers consisting of poly(propylene glycol), poly(ethylene glycol), and polycaprolactone as in situ thermogels. Biomacromolecules. 2012;13(12):3977–3989.
  • Lundy BB, Convertine A, Miteva M, et al. Neutral polymeric micelles for RNA delivery. Bioconjugate Chem. 2013;24(3):398–407.
  • Rajamalli P, Atta S, Maity S, et al. Supramolecular design for two-component hydrogels with intrinsic emission in the visible region. Chem Commun. 2013;49(17):1744–1746.
  • Wang XJ, Xing LB, Wang F, et al. Multistimuli responsive micelles formed by a tetrathiafulvalene-functionalized amphiphile. Langmuir. 2011;27(14):8665–8671.
  • Xu J, Wang L, Zhu Y. Decontamination of bisphenol A from aqueous solution by graphene adsorption. Langmuir. 2012;28(22):8418–8425.
  • Nanda J, Biswas A, Banerjee A. Single amino acid based thixotropic hydrogel formation and pH-dependent morphological change of gel nanofibers. Soft Matter. 2013;9(16):4198–4208.
  • Shao H, Nguyen T, Romano NC, et al. Self-assembly of 1-D n-type nanostructures based on naphthalene diimide-appended dipeptides. J Am Chem Soc. 2009;131(45):16374–16376.
  • Shin S, Gihm SH, Park CR, et al. Water-soluble fluorinated and PEGylated cyanostilbene derivative: an amphiphilic building block forming self-assembled organic nanorods with enhanced fluorescence emission. Chem Mater. 2013;25(16):3288–3295.
  • Klaikherd A, Nagamani C, Thayumanavan S. Multi-stimuli sensitive amphiphilic block copolymer assemblies. J Am Chem Soc. 2009;131(13):4830–4838.
  • Bigot J, Charleux B, Cooke G, et al. Tetrathiafulvalene end-functionalized poly(N-isopropylacrylamide): a new class of amphiphilic polymer for the creation of multistimuli responsive micelles. J Am Chem Soc. 2010;132(31):10796–10801.
  • Wang C, Wang G, Wang Z, et al. A pH-responsive superamphiphile based on dynamic covalent bonds. Chem Eur J. 2011;17(12):3322–3325.
  • Bhatia S, Mohr A, Mathur D, et al. Biocatalytic route to sugar-PEG-based polymers for drug delivery applications. Biomacromolecules. 2011;12(10):3487–3498.
  • Cheng Y, Hao J, Lee LA, et al. Thermally controlled release of anticancer drug from self-assembled γ-substituted amphiphilic poly(ε-caprolactone) micellar nanoparticles. Biomacromolecules. 2012;13(7):2163–2173.
  • Yang X, Zhang X, Liu Z, et al. High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J Phys Chem C. 2008;112(45):17554–17558.
  • Lai Y, Lei Y, Xu X, et al. Polymeric micelles with [small pi]-[small pi] conjugated cinnamic acid as lipophilic moieties for doxorubicin delivery. J Mater Chem B. 2013;1(34):4289–4296.
  • Cui C, Xue Y, Wu M, et al. Cellular uptake, intracellular trafficking, and antitumor efficacy of doxorubicin-loaded reduction-sensitive micelles. Biomaterials. 2013;34(15):3858–3869.