1,402
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Biosynthesis of antioxidative enzymes and polyphenolics content in calli cultures of Prunella vulgaris L. in response to auxins and cytokinins

, ORCID Icon, ORCID Icon, , , , , , , & show all
Pages 893-902 | Received 17 Sep 2019, Accepted 27 Mar 2020, Published online: 03 Jun 2020

References

  • Fazal H, Abbasi BH, Ahmad N, et al. Sustainable production of biomass and industrially important secondary metabolites in cell cultures of selfheal (Prunella vulgaris L.) elicited by silver and gold nanoparticles. Artif Cells Nanomed Biotechnol. 2019;47(1):2553–2561.
  • Fazal H, Shinwari ZK, Ahmad N, et al. Factors influencing in vitro seed germination, morphogenetic potential and correlation of secondary metabolism with tissue development in Prunella vulgaris L. Pak J Bot. 2016a;48(1):193–200. 2016a.
  • Rasool R, Kamili AN, Ganai BA, et al. Effect of BAP and NAA on shoot regeneration in Prunella vulgaris. J Nat Sci Math. 2009;3(1):21–26.
  • Chen CY, Wu G, Zhang MZ. The effects and mechanism of action of Prunella vulgaris L. extract on Jurkat human T lymphoma cell proliferation. Chin Ger J Clin Oncol. 2009;8(7):426–429.
  • Golembiovska OI, Tsurkan AA. Anthocyanins profiling of Prunella vulgaris L. grown in Ukraine. Pharm Innov. 2013;2(6):42–48.
  • Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–48.
  • Racchi ML, Bagnoli F, Balla I, et al. Differential activity of catalase and superoxide dismutase in seedlings and in vitro micropropagated oak (Quercus robur L.). Plant Cell Rep. 2001;20(2):169–174.
  • Gupta SD, Datta S. Antioxidant enzyme activities during in vitro morphogenesis of gladiolus and the effect of application of antioxidant on plant regeneration. Biol Plant. 2004;47(2):179–183.
  • Joo SS, Kim Y, Lee DI. Antimicrobial and antioxidant properties of secondary metabolites from white rose flower. Plant Pathol. J. 2010;26(1):57–62.
  • Fazal H, Abbasi BH, Ahmad N, et al. Elicitation of medicinally important antioxidant secondary metabolites with silver and gold nanoparticles in callus cultures of Prunella vulgaris L. Appl Biochem Biotechnol. 2016b;180(6):1076–1092.
  • Giri (1, ) L, Dhyani P, Rawat S, et al. In vitro production of phenolic compounds and antioxidant activity in callus suspension cultures of Habenaria edgeworthii: a rare Himalayan medicinal orchid. Ind Crop Prod. 2012;39:1–6.
  • Fazal H, Abbasi BH, Ahmad N. Optimization of adventitious root culture for production of biomass and secondary metabolites in Prunella vulgaris L. Appl Biochem Biotechnol. 2014;174(6):2086–2095.
  • Ali M, Abbasi BH. Thidiazuron-induced changes in biomass parameters, total phenolic content, and antioxidant activity in callus cultures of Artemisia absinthium L. Appl Biochem Biotechnol. 2014;172(5):2363–2376.
  • Abbasi BH, Khan M, Guo B, et al. Efficient regeneration and antioxidative enzyme activities in Brassica rapa var. turnip. Plant Cell Tiss Organ Cult. 2011;105(3):337–344.
  • Abbasi BH, Saxena PK, Murch SJ, et al. Echinacea biotechnology: challenges and opportunities. In Vitro Celldevbiol-Plant. 2007;43(6):481–492.
  • Kumar GNM, Knowles NR. Changes in lipid peroxidation and lipolytic and free radical scavenging enzyme activities during aging and sprouting of potato (Solanum tuberosum) seed-tubers. Plant Physiol. 1993;102(1):115–124.
  • Franck T, Kevers C, Gaspar T. Protective enzymatic systems against activated oxygen species compared in normal and hyperhydric shoots of Prunus avium L. raised in vitro. Plant Growth Regul. 1995;16(3):253–256.
  • Meratan AA, Ghaffari SM, Niknam V. In vitro organogenesis and antioxidant enzymes activity in Acanthophyllum sordidum. Biol Plant. 2009;53(1):5–10.
  • Sreelatha S, Padma PR. Antioxidant activity and total phenolic content of Moringa oleifera leaves in two stages of maturity. Plant Foods Hum Nutr. 2009;64(4):303–311.
  • Kosar M, Goger F, Baser K. In vitro antioxidant properties and phenolic composition of Salvia halophila Hedge from Turkey. Food Chem. 2011;129(2):374–379.
  • Matkowski A. Plant in vitro culture for the production of antioxidants-a review. Biotechnol Adv. 2008;26(6):548–560.
  • Parsaeimehr A, Sargsyan E, Javidnia K. A comparative study of the antibacterial, antifungal and antioxidant activity and total content of phenolic compounds of cell cultures and wild plants of three endemic species of Ephedra. Molecules. 2010;15(3):1668–1678.
  • Costa P, Gonçalves S, Valentão P, et al. Thymus lotocephalus wild plants and in vitro cultures produce different profiles of phenolic compounds with antioxidant activity. Food Chem. 2012;135(3):1253–1260.
  • Naz S, Ali A, Iqbal J. Phenolic content in vitro cultures of chick pea (Cicer arietinum L.) during callogenesis. Pak. J. Bot. 2008;40(6):2525–2539.
  • Ghasemzadeh A, Jaafar HZE, Rahmat A, et al. Effect of different light intensities on total phenolics and flavonoids synthesis and anti-oxidant activities in young ginger varieties (Zingiber officinale Roscoe). Int J Mol Sci. 2010;11(10):3885–3897.
  • Hemm MR, Rider SD, Ogas J, et al. Light induces phenylpropanoid metabolism in Arabidopsis roots. Plant J. 2004;38(5):765–778.
  • Liu CZ, Guo C, Wang YC, et al. Effect of light irradiation on hairy root growth and artemisinin biosynthesis of Artemisia annua. Process Biochem. 2002;38(4):581–585.
  • Khan MA, Abbasi BH, Ahmed N, et al. Effects of light regimes on in vitro seed germination and silymarin content in Silybum marianum. Ind. Crop Prod. 2013;46:105–110.
  • Abouzid SF, El-Bassuon AA, Nasib A, et al. Withaferin A production by root cultures of Withania coagulans. Int J Appl Res Nat Prod. 2010;3(1):23–27.
  • Duangporn P, Siripong P. Effect of auxin and cytokinin on phyllanthusol A production by callus cultures of Phyllanthus acidus Skeels. American-Eurasian J Agric Environ Sci. 2009;5:258–263.
  • Güllüce M, Sökmen M, Daferera D, et al. In vitro antibacterial, antifungal, and antioxidant activities of the essential oil and methanol extracts of herbal parts and callus cultures of Satureja hortensis L. J Agric Food Chem. 2003;51(14):3958–3965.
  • Fazal H, Abbasi BH, Ahmad N, et al. Sucrose induced osmotic stress and photoperiod regimes enhanced the biomass and production of antioxidant secondary metabolites in shake-flask suspension cultures of Prunella vulgaris L. Plant Cell Tiss Organ Cult. 2016c;124(3):573–581.
  • Fazal H, Abbasi BH, Ahmad N, et al. Correlation of different spectral lights with biomass accumulation and production of antioxidant secondary metabolites in callus cultures of medicinally important Prunella vulgaris L. J Photochem Photobiol B, Biol. 2016d;159:1–7.
  • Fazal H, Abbasi BH, Ahmad N, et al. Exogenous melatonin trigger biomass accumulation and production of stress enzymes during callogenesis in medicinally important Prunella vulgaris L. (Selfheal). Physiol Molecul Biol Plant. 2018;24:1307–1315.