3,048
Views
21
CrossRef citations to date
0
Altmetric
Research Article

Zinc oxide nanoparticles synthesised from the Vernonia amygdalina shows the anti-inflammatory and antinociceptive activities in the mice model

, , , , , , , , & show all
Pages 1068-1078 | Received 08 Nov 2019, Accepted 03 Aug 2020, Published online: 20 Aug 2020

References

  • Widyaningtyas AL, Yulizar Y, Bagus Apriandanu DO. Ag2O nanoparticles fabrication by Vernonia amygdalina Del. leaf extract: synthesis, characterization, and its photocatalytic activities. IOP Conf Ser Mater Sci Eng. 2019;509:012022.
  • Vidya C, Hiremath S, Chandraprabha MN, et al. Green synthesis of ZnO nanoparticles by Calotropis gigantea. Int J Curr Eng Technol. 2013;1:118–120.
  • Sabir S, Arshad M, Chaudhari SK. Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. Sci World J. 2014;2014:1–8.
  • Khalafi T, Buazar F, Ghanemi K. Phycosynthesis and enhanced photocatalytic activity of zinc oxide nanoparticles toward organosulfur pollutants. Sci Rep. 2019;9(1):6866.
  • Umar H, Kavaz D, Rizaner N. Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. IJN 2018;14:87–100.
  • Aslani F, Bagheri S, Julkapli MN, et al. Effects of engineered nanomaterials on plants growth: an overview. Sci World J. 2014;2014:1–28.
  • Wiesmann N, Kluenker M, Demuth Brenner PW, et al. Zinc overload mediated by zinc oxide nanoparticles as innovative anti-tumor agent. J Trace Elem Med Biol. 2019;51:226–234.
  • Elumalai K, Velmurugan S, Ravi S, et al. RETRACTED: green synthesis of zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity. Spectrochim Acta A Mol Biomol Spectrosc. 2015;143:158–164.
  • Zhong Q, Kou H, Yang L, et al. Factors influencing variations in the thermal conductivity of polycrystalline ZnS and Cr2+:ZnS. Mater Lett. 2015;158:222–227.
  • Habibi MH, Rahmati MH. The effect of operational parameters on the photocatalytic degradation of Congo red organic dye using ZnO-CdS core-shell nano-structure coated on glass by Doctor Blade method. Spectrochim Acta A Mol Biomol Spectrosc. 2015;137:160–164.
  • Dimkpa CO, Singh U, Bindraban PS, et al. Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification. Sci Total Environ. 2019;688:926–934.
  • Ijeh II, Ejike CECC. Current perspectives on the medicinal potential of Vernonia amygdalina Del. J Med Plant Res. 2011;5(7):1051–1061.
  • Singha SC. Medicinal plants of Nigeria. Lagos (Nigeria): Nigerian National Press; 1965.
  • Masaba SC. The antimalarial activity of Vernonia amygdalina Del (Compositae). Trans R Soc Trop Med Hyg. 2000;94(6):694–695.
  • Huffman MA. Animal self-medication and ethno-medicine: exploration and exploitation of the medicinal properties of plants. Proc Nutr Soc. 2003;62(2):371–381.
  • Adedapo AA, Otesile AT, Soetan KO. Assessment of the anthelmintic efficacy of the aqueous crude extract of Vernonia amygdalina. Pharm Biol. 2007;45(7):564–568.
  • Egedigwe CA. Effect of dietary incorporation of Vernonia amygdalina and Vernonia colorata on blood lipid profile and relative organ weights in albino rats [thesis]. Nigeria: Dep Biochem, MOUAU; 2010.
  • Ferrero-Miliani L, Nielsen OH, Andersen PS, et al. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1beta generation. Clin Exp Immunol. 2007;147(2):227–235.
  • Drozdova IL, Bubenchikov RA. Composition and anti-inflammatory activity of polysaccharide complexes extracted from sweet violet and low mallow. Pharm Chem J. 2005;39(4):197–200.
  • Akinyemi KO, Oladapo O, Okwara CE, et al. Screening of crude extracts of six medicinal plants used in South-West Nigerian unorthodox medicine for anti-methicillin resistant Staphylococcus aureus activity. BMC Complement Altern Med. 2005;5(1):1–7.
  • Prabhu KS, Lobo R, Shirwaikar AA, et al. Ocimum gratissimum: a review of its chemical, pharmacological and ethnomedicinal properties. TOALTMEDJ. 2009;1(1):1–15.,
  • Ogunyemi SO, Abdallah Y, Zhang M, et al. Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. oryzae. Artif Cells Nanomed Biotechnol. 2019;47(1):341–352.
  • Roy S, Triparna M, Shatarupa T, et al. Biosynthesis, characterization and antifungal activity of zinc oxide nanoparticles synthesized by the fungus Aspergillus foetidus. J Nanometer Biostruc. 2013;8:197–205.
  • Rad SS, Sani AM, Mohseni S. Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of Mentha pulegium (L.). Microb Pathog. 2019;131:239–245.
  • Shobha N, Nanda N, Giresha AS, et al. Synthesis and characterization of zinc oxide nanoparticles utilizing seed source of Ricinus communis and study of its antioxidant, antifungal and anticancer activity. Mater Sci Eng C Mater Biol Appl. 2019;97:842–850.
  • Baliah NT, Priyatharsini SL. Biosynthesis and characterization of zinc oxide nanoparticles using onion bulb extract. IJTSRD. 2018;2(2):36–43.
  • Koster R, Anderson M, De Beer EJ. Acetic acid analgesic screening. Fed Proc. 1959;18:412.
  • Wakatsuki K, T-Uchimura Y, Matsubara T, et al. Peripheral nociceptive mechanisms in an experimental rat model of fibromyalgia induced by repeated cold stress. Neurosci Res. 2019;30483.
  • Valek L, Auburger G, Tegeder I. Sensory neuropathy and nociception in rodent models of Parkinson’s disease. Dis Model Mech. 2019;12(6):039396.
  • Hunskaar S, Fasmer OB, Hole K. Formalin test in mice, a useful technique for evaluating mild analgesics. J Neurosci Methods. 1985;14(1):69–76.
  • Vinegar R, Truax JF, Selph JL. Some quantitative temporal characteristics of carrageenin-induced pleurisy in the rat. Proc Soc Exp Biol Med. 1973;143(3):711–714.
  • Edwards JC, Sedgwick AD, Willoughby DA. The formation of a structure with the features of synovial lining by subcutaneous injection of air: an in vivo tissue culture system. J Pathol. 1981;134(2):147–156.
  • Joe MM, Jayochitra J, Vijayapriaya M. Antimicrobial activity of some common spices against certain human pathogens. J Med Plants Res. 2009;3:1134–1136.
  • Sangeetha G, Rajeshwari S, Venckatesh R. Green synthesis of zinc oxide nanoparticles by Aloe barbadeneis Miller. leaf extract: structure and optical properties. Mat Res Bull. 2011;46(12):2560–2566.
  • Raut RD, Narkhede B, Gardas BB. To identify the critical success factors of sustainable supply chain management practices in the context of oil and gas industries: ISM approach. Renewable Sustainable Energy Rev. 2017;68(1):33–47.
  • Walker CIB, Trevisan G, Rossato MF, et al. Antinociceptive effect of Mirabilis jalapa on acute and chronic pain models in mice. J Ethnopharmacol. 2013;149(3):685–693.
  • Schlesinger N. Anti-interleukin-1 therapy in the management of gout. Curr Rheumatol Rep. 2014;16(2):398
  • Jamdagni P, Poonam Khatri J, Rana S. Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. J King Saud Univ Sci. 2016;3(8):417–432.
  • Chen P, Wang H, He M, et al. Size-dependent cytotoxicity study of ZnO nanoparticles in HepG2 cells. Ecotoxicol Environ Saf. 2019;171:337–346.
  • Gupta M, Tomar RS, Kaushik S, et al. Effective antimicrobial activity of green ZnO nano particles of Catharanthus roseus. Front Microbiol. 2018;9:2030.
  • Zheng Y, Fu L, Han F, et al. Green biosynthesis and characterization of zinc oxide nanoparticles using Corymbia citriodora leaf extract and their photocatalytic activity. Green Chem Lett Rev. 2015;8(2):59–63.
  • Dobrucka R, Długaszewska J. Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J Biol Sci. 2016;23(4):517–523.
  • Bars DL, Gozariu M, Cadden SW. Animal models of nociception. Pharmacol Rev. 2001;53(4):597–652.
  • De Souza MM, Pereira MA, Ardenghi JV, et al. Filicene obtained from Adiantum cuneatum interacts with the cholinergic, dopaminergic, glutamatergic, GABAergic, and tachykinergic systems to exert antinociceptive effect in mice. Pharmacol Biochem Behav. 2009;93(1):40–46.
  • Ramirez MR, Guterres L, Odila ED, et al. Preliminary studies on the antinociceptive activity of Vaccinium ashei berry in experimental animal models. J Med Food. 2010;13(2):336–352.
  • Reynoso MA, Vera N, Aristimuno ME, et al. Antinociceptive activity of fruits extracts and “arrope” of Geoffroea decorticans (chañar). J Ethnopharmacol. 2013;145(1):355–362.
  • Goncalves GN, Marinho DG, Almanca CCJ, et al. Antinociceptive and anti-oedematogenic properties of the hydroethanolic extract of Sidastrum micranthum leaves in mice. Rev Bras Farmacogn. 2013;23(5):836–843.
  • Mishra A, Mishra DK, Bohra NK. Synthesis and characterization of zinc oxide nanoparticles by Azadirachta indica leaves. Ann Arid Zone. 2015;54(1&2):43–49.
  • Sneddon LU. Evolution of nociception and pain: evidence from fish models. Philos Trans R Soc Lond B Biol Sci. 2019;374(1785):20190290.
  • Adeolu Alex A, Olujoke Janet A, Ademola Adetokunbo O. Anti-oxidant, anti-inflammatory and antinociceptive properties of the acetone leaf extract of Vernonia amygdalina in some laboratory animals. Adv Pharm Bull. 2014;4(2):591–598.
  • Guo J, Zhang D, Yu C, et al. Phytochemical analysis, antioxidant and analgesic activities of Incarvillea compacta Maxim from the Tibetan plateau. Molecules. 2019;24(9):1692.
  • Ondua M, Njoya EM, Abdalla MA, et al. Anti-inflammatory and antioxidant properties of leaf extracts of eleven South African medicinal plants used traditionally to treat inflammation. J Ethnopharmacol. 2019;234:27–35.
  • Demsie DG, Yimer EM, Berhe AH, et al. Anti-nociceptive and anti-inflammatory activities of crude root extract and solvent fractions of Curcumis ficifolius in mice model. JPR. 2019;12:1399–1409.
  • Hajhashemi V, Fahmideh F, Ghanadian M. Antinociceptive effect of methanolic extract and alkaloid fractions of Berberis integerrima root in animal models. Avecenna J Phytomed. 2018;8(3):227–236.
  • Ayanniyi RO, Ojuade FI, Olumoh-Abdul H, et al. Evaluation of anti-nociceptive and anti-inflammatory activities of leaf extract of Turraea vogelli Hook. f. ex. Benth. Pak J Pharm Sci. 2019;32(1):241–245.
  • Parandin R, Daroogari S. Anti-inflammatory and antinociceptive activities of the ethanolic extract of propolis in male mice and rats. Zahedan J Res Med Sci. 2019;21(2):e84150.
  • Gawade SP. Acetic acid induced painful endogenous infliction in writhing test on mice. J Pharmacol Pharmacother. 2012;3(4):348.
  • Wang Y, Lai L, Teng L, et al. Mechanism of the anti-inflammatory activity by a polysaccharide from Dictyophora indusiata in lipopolysaccharide-stimulated macrophages. Int J Biol Macromol. 2019;126:1158–1166.
  • Ferreira SH, Moncada S, Vane JR. Some effects of inhibiting endogenous prostaglandin formation on the responses of the cat spleen. Br J Pharmacol. 1973;47(1):48–58.
  • Rosa MD, Giroud JP, Willoughby DA. Studies on the mediators of the acute inflammatory response induced in rats in different sites by carrageenan and turpentine. J Pathol. 1971;104(1):15–29.
  • Dobrek L, Thor P. Glutamate NMDA receptors in pathophysiology and pharmacotherapy of selected nervous system diseases. Postepy Hig Med Dosw (Online). 2011;65:338–346.
  • Hassani FV, Rezaee R, Sazegara H, et al. Effects of silymarin on neuropathic pain and formalin-induced nociception in mice. Iran J Basic Med Sci. 2015;18(7):715–720.
  • Ratnayake WMKM, Suresh TS, Abeysekera AM, et al. Acute anti-inflammatory and anti-nociceptive activities of crude extracts, alkaloid fraction and evolitrine from Acronychia pedunculata leaves. J Ethnopharmacol. 2019;238:111827.
  • Schomberg D, Olson JK. Immune responses of microglia in the spinal cord: contribution to pain states. Exp Neurol. 2012;234(2):262–270.
  • Taves S, Berta T, Chen G, et al. Microglia and spinal cord synaptic plasticity in persistent pain. Neural Plast. 2013;2013:753656.