16,497
Views
114
CrossRef citations to date
0
Altmetric
Research Article

Green synthesis of copper nanoparticles using Cissus vitiginea and its antioxidant and antibacterial activity against urinary tract infection pathogens

, , &
Pages 1153-1158 | Received 27 Aug 2019, Accepted 28 May 2020, Published online: 14 Sep 2020

References

  • Koch CC. Nanostructured materials, processing, properties and applications. Norwich, New York: Noyes Publications; 2002.
  • Gardea-Torresdey JL, Parsons JG, Gomez E, et al. Formation and growth of Au nano particles inside live alfalfa plants. Nano Lett. 2002;2(4):397–401.
  • Panigrahi S, Kundu S, Ghosh SK, Nath S, et al. General method of synthesis for metal Nanoparticle. J Nanopart Res. 2004;6(4):411–414.
  • Mari G, Bajpai SK, Chand N. Copper alginate- cotton cellulose (CACC) fibers with excellent antibacterials properties. J Eng Fiber Faber. 2009;4:24–35.
  • Li M, Xiang K, Luo G, et al. Preparation of monodispersed copper nanoparticles by an environmentally friendly chemical reduction. Chin J Chem. 2013;31(10):1285–1289.
  • Liu Z, Bando Y. A novel method for preparing copper nanorods and nanowires. Adv Mater. 2003;15(4):303–305.
  • Yeh MS, Yang YS, Lee YP, et al. Formation and characteristics of Cu colloids from CuO powder by laser irradiation in 2-propanol. J Phys Chem B. 1999;103(33):6851–6857.
  • Yallappa S, Manjanna J, Sindhe MA, et al. Microwave assisted rapid synthesis and biological evaluation of stable copper nanoparticles using T. arjuna bark extract. Spectrochim Acta A Mol Biomol Spectrosc. 2013;110:108–111.
  • Rajeshkumar S. Anticancer activity of eco-friendly gold nanoparticles against lung and liver cancer cells. J Genet Eng Biotechnol. 2016;14(1):195–202.
  • Ponnanikajamideen M, Rajeshkumar S, Vanaja M, et al. In-vivo anti-diabetic and wound healing effect of antioxidant gold nanoparticles synthesized using insulin plant (Chamaecostus cuspidatus). Can J Diabetes. 2019;43(2):82–89.e6.
  • Rajeshkumar S, Rinitha G. Nanostructural characterization of antimicrobial and antioxidant copper nanoparticles synthesized using novel Persea americana seeds. Open Nano. 2018;3:18–27.
  • Rajeshkumar S, Malarkodi C, Paulkumar K, et al. Algae mediated green fabrication of silver nanoparticles and examination of its antifungal activity against clinical pathogens. Int J Metals. 2014;2014:1–8.
  • Sidjui LS, Ponnanikajamideen M, Malini M, et al. Lovoa trichilioides root back mediated green synthesis of silver nanoparticles and rating of its antioxidant and antibacterial activity against clinical pathogens. J Nanosci Nanotechnol. 2016;2(1):32–36.
  • Mohindru JJ, Garg UK. Green synthesis of copper nanoparticles using tea leaf extract. IJESRT. 2017;6(7):307–311.
  • Ashtaputrey SD, Ashtaputrey PD, Yelane N. Green synthesis and characterization of copper nanoparticles derived from Murraya koenigii leaves extract. Int J Chem Pharm Sci. 2017;10(3):1288–1291.
  • Chung I, Rahuman AA, Marimuthu S, et al. Green synthesis of copper nanoparticles using Eclipta prostrata leaves extract and their antioxidant and cytotoxic activities. Exp Ther Med. 2017;14(1):18–24.
  • Batoool M, Masood B. Green synthesis of copper nanoparticles using Solanum lycopersicum (tomato aqueous extract) and study characterization. J Nanosci Nanotechnol Res. 2017;1:1–5.
  • Kaur P, Thakur R, Chaudhury A. Biogenesis of copper nanoparticles using peel extract of Punica granatum and their antimicrobial activity against opportunistic pathogens. Green Chem Lett Rev. 2016;9(1):33–38.
  • Kulkarni V, Kulkarni P. Synthesis of copper nanoparticles with Aegle marmelos leaf extract. J Nanosci Nanotechnol. 2014;8(10):401–404.
  • Wen J, Nie Z‐L, Soejima A, et al. Phylogeny of Vitaceae based on the nuclear GAI1 gene sequences. Can J Bot. 2007;85(8):731–745.
  • Huang WY, Cai YZ, Zhang Y. Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr Cancer. 2010;62(1):1–20.
  • Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem. 1999;269(2):337–341.
  • Niki E. Assessment of antioxidant capacity in vitro and in vivo. Free Radic Biol Med. 2010;49(4):503–515.
  • Harborne JB. Phytochemical methods. 2 ed. New York: Chapman and Hall; 1984.
  • Liyana-Pathirana CM, Shahidi F. Antioxidant activity of commercial soft and hard wheat (Triticum aestivum L.) as affected by gastric pH conditions. J Agric Food Chem. 2005;53(7):2433–2440.
  • Ramyadevi J, Jeyasubramanian K, Marikani A, et al. Synthesis and antimicrobial activity of copper nanoparticles. Mater Lett. 2012;71:114–116.
  • Nasrollahzadeh M, Sajadi SM, Khalaj M. Green synthesis of copper nanoparticles using aqueous extract of the leaves of Euphorbia esula L and their catalytic activity for ligand-free Ullmann-coupling reaction and reduction of 4-nitrophenol. RSC Adv. 2014;4(88):47313–47318.
  • Song Y, Cho D, Venkateswarlu S, et al. Systematic study on preparation of copper nanoparticle embedded porous carbon by carbonization of metal–organic framework for enzymatic glucose sensor. RSC Adv. 2017;7(17):10592–10600.
  • Suárez-Cerda J, Espinoza-Gómez H, Alonso-Núñez G, et al. A green synthesis of copper nanoparticles using native cyclodextrins as stabilizing agents. J Saudi Chem Soc. 2017;21(3):341–348.
  • Ruparelia JP, Chatterjee AK, Duttagupta SP, et al. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 2008;4(3):707–716.
  • Sivaraj R, Rahman PK, Rajiv P, et al. Biogenic copper oxide nanoparticles synthesis using Tabernaemontana divaricate leaf extract and its antibacterial activity against urinary tract pathogen. Spectrochim Acta A Mol Biomol Spectrosc. 2014;133:178–181.