1,777
Views
17
CrossRef citations to date
0
Altmetric
Article

Near-infra-red fluorescent chitosan oligosaccharide lactate for targeted cancer imaging and photothermal therapy

, , , &
Pages 1144-1152 | Received 18 Sep 2019, Accepted 02 Feb 2020, Published online: 04 Sep 2020

References

  • Song XJ, Chen Q, Liu Z. Recent advances in the development of organic photothermal nano-agents. Nano Res. 2015;8(2):340–354.
  • Zhang H, Li Q, Liu R, et al. A versatile prodrug strategy to in situ encapsulate drugs in MOF nanocarriers: a case of cytarabine‐IR820 prodrug encapsulated ZIF‐8 toward chemo‐photothermal therapy. Adv Funct Mater. 2018;28(35):1802830.
  • Lee S, Jung JS, Jo G, et al. Near-infrared fluorescent sorbitol probe for targeted photothermal cancer therapy. Cancers. 2019;11:1286.
  • Nouri S, Mohammadi E, Mehravi B, et al. NIR triggered glycosylated gold nanoshell as a photothermal agent on melanoma cancer cells. Artif Cells Nanomed Biotechnol. 2019;47(1):2316–2324.
  • Zhang J, Miao Y, Ni W, et al. Cancer cell membrane coated silica nanoparticles loaded with ICG for tumour specific photothermal therapy of osteosarcoma. Artif Cells Nanomed Biotechnol. 2019;47(1):2298–2305.
  • Lal S, Clare SE, Halas NJ. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res. 2008;41(12):1842–1851.
  • Riley RS, Day ES. Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. WIREs Nanomed Nanobiotechnol. 2017;9(4):e1449.
  • Ghaznavi H, Hosseini-Nami S, Kamrava SK, et al. Folic acid conjugated PEG coated gold-iron oxide core-shell nanocomplex as a potential agent for targeted photothermal therapy of cancer. Artif Cells Nanomed Biotechnol. 2018;46(8):1594–1604.
  • Yu H, Cui Z, Yu P, et al. pH- and NIR light-responsive micelles with hyperthermia-triggered tumor penetration and cytoplasm drug release to reverse doxorubicin resistance in breast cancer. Adv Funct Mater. 2015;25(17):2489–2500.
  • Zhu H, Cheng P, Chen P, et al. Recent progress in the development of near-infrared organic photothermal and photodynamic nanotherapeutics. Biomater Sci. 2018;6(4):746–765.
  • Tan X, Luo S, Wang D, et al. A NIR heptamethine dye with intrinsic cancer targeting, imaging and photosensitizing properties. Biomaterials. 2012;33(7):2230–2239.
  • Ma Y, Zhang M, Li P, et al. Multifunctional small molecule fluorophore for long-duration tumor-targeted monitoring and dual modal phototherapy. Part Part Syst Charact. 2017;34(7):1700076.
  • Cheng L, Wang C, Feng L, et al. Functional nanomaterials for phototherapies of cancer. Chem Rev. 2014;114(21):10869–10939.
  • Song J, Yang X, Jacobson O, et al. Ultrasmall gold nanorod vesicles with enhanced tumor accumulation and fast excretion from the body for cancer therapy. Adv Mater Weinheim. 2015;27(33):4910–4917.
  • Nie S. Understanding and overcoming major barriers in cancer nanomedicine. Nanomedicine. 2010;5(4):523–528.
  • Devarajan PV, Patravale VB. Nanomedicine-prospects and challenges. Drug Deliv Transl Res. 2013;3(5):381.
  • Muanprasat C, Chatsudthipong V. Chitosan oligosaccharide: biological activities and potential therapeutic applications. Pharmacol Ther. 2017;170:80–97.
  • Lee EH, Lim SJ, Lee MK. Chitosan-coated liposomes to stabilize and enhance transdermal delivery of indocyanine green for photodynamic therapy of melanoma. Carbohydr Polym. 2019;224:115143.
  • Ignjatović NL, Sakač M, Kuzminac I, et al. Chitosan oligosaccharide lactate coated hydroxyapatite nanoparticles as a vehicle for the delivery of steroid drugs and the targeting of breast cancer cells. J Mater Chem B. 2018;6(43):6957–6968.
  • Jadidi-Niaragh F, Atyabi F, Rastegari A, et al. CD73 specific siRNA loaded chitosan lactate nanoparticles potentiate the antitumor effect of a dendritic cell vaccine in 4T1 breast cancer bearing mice. J Control Release. 2017;246:46–59.
  • Manivasagan P, Jun SW, Nguyen VT, et al. A multifunctional near-infrared laser-triggered drug delivery system using folic acid conjugated chitosan oligosaccharide encapsulated gold nanorods for targeted chemo-photothermal therapy. J Mater Chem B. 2019;7(24):3811–3825.
  • Bharathiraja S, Bui NQ, Manivasagan P, et al. Multimodal tumor-homing chitosan oligosaccharide-coated biocompatible palladium nanoparticles for photo-based imaging and therapy. Sci Rep. 2018;8(1):500
  • Manivasagan P, Bharathiraja S, Santha Moorthy M, et al. Biocompatible chitosan oligosaccharide modified gold nanorods as highly effective photothermal agents for ablation of breast cancer cells. Polymers. 2018;10(3):232.
  • Manivasagan P, Hoang G, Santha Moorthy M, et al. Chitosan/fucoidan multilayer coating of gold nanorods as highly efficient near-infrared photothermal agents for cancer therapy. Carbohydr Polym. 2019;211:360–369.
  • Choi HS, Nasr K, Alyabyev S, et al. Synthesis and in vivo fate of zwitterionic near-infrared fluorophores. Angew Chem Int Ed Engl. 2011;50(28):6258–6263.
  • Hyun H, Bordo MW, Nasr K, et al. cGMP-Compatible preparative scale synthesis of near-infrared fluorophores. Contrast Media Mol Imaging. 2012;7(6):516–524.
  • Choi HS, Gibbs SL, Lee JH, et al. Targeted zwitterionic near-infrared fluorophores for improved optical imaging. Nat Biotechnol. 2013;31(2):148–153.
  • Yoo Y, Jo G, Jung JS, et al. Multivalent sorbitol probes for near‐infrared photothermal cancer therapy. Part Part Syst Charact. 2020;37(2):1900490.
  • Thavornpradit S, Usama SM, Park GK, et al. QuatCy: a heptamethine cyanine modification with improved characteristics. Theranostics. 2019;9(10):2856–2867.
  • Lee S, Lim W, Jo D, et al. Near-infrared fluorescent sorbitol probe for tumor diagnosis in vivo. J Ind Eng Chem. 2018;64:80–84.