1,486
Views
24
CrossRef citations to date
0
Altmetric
Research Article

Synergistic response of physicochemical reaction parameters on biogenesis of silver nanoparticles and their action against colon cancer and leishmanial cells

ORCID Icon, ORCID Icon, , &
Pages 1340-1353 | Received 25 Jul 2020, Accepted 09 Nov 2020, Published online: 26 Nov 2020

References

  • Javed B, Mashwani ZUR. Synergistic effects of physicochemical parameters on bio-fabrication of mint silver nanoparticles: structural evaluation and action against HCT116 colon cancer cells. IJN. 2020;15:3621–3637.
  • Liu Y, Huang L, Mahmud S, et al. Gold nanoparticles biosynthesized using Ginkgo biloba leaf aqueous extract for the decolorization of azo-dyes and fluorescent detection of Cr(VI). J Clust Sci. 2020;31(2):549–560.
  • Helan V, Prince JJ, Al-Dhabi NA, et al. Neem leaves mediated preparation of NiO nanoparticles and its magnetization, coercivity and antibacterial analysis. Results Phys. 2016;6:712–718.
  • Huang L, Sun Y, Mahmud S, et al. Biological and environmental applications of silver nanoparticles synthesized using the aqueous extract of Ginkgo biloba leaf. J Inorg Organomet Polym. 2020;30(5):1653–1668.
  • Rajakumar G, Rahuman AA, Roopan SM, et al. Efficacy of larvicidal activity of green synthesized titanium dioxide nanoparticles using Mangifera indica extract against blood-feeding parasites. Parasitol Res. 2015;114(2):571–581.
  • Devipriya D, Roopan SM. Cissus quadrangularis mediated ecofriendly synthesis of copper oxide nanoparticles and its antifungal studies against Aspergillus niger, Aspergillus flavus. Mater Sci Eng C Mater Biol Appl. 2017;80:38–44.
  • Roopan SM, Kumar SHS, Madhumitha G, et al. Biogenic-production of SnO2 nanoparticles and its cytotoxic effect against hepatocellular carcinoma cell line (HepG2). Appl Biochem Biotechnol. 2015;175(3):1567–1575.
  • Madivoli ES, Kareru PG, Gachanja AN, et al. Facile synthesis of silver nanoparticles using Lantana trifolia aqueous extracts and their antibacterial activity. J Inorg Organomet Polym. 2020;30(8):2842–2850.
  • Elemike EE, Onwudiwe DC, Singh M. Eco-friendly synthesis of copper oxide, zinc oxide and copper oxide–zinc oxide nanocomposites, and their anticancer applications. J Inorg Organomet Polym. 2020;30(2):400–409.
  • Elemike EE, Onwudiwe DC, Ogeleka DF, et al. Phyto-assisted preparation of Ag and Ag–CuO nanoparticles using aqueous extracts of Mimosa pigra and their catalytic activities in the degradation of some common pollutants. J Inorg Organomet Polym. 2019;29(5):1798–1806.
  • Abbasi BA, Iqbal J, Zahra SA, et al. Bioinspired synthesis and activity characterization of iron oxide nanoparticles made using Rhamnus triquetra leaf extract. Mater Res Express. 2019;6:1250e7.
  • Abbasi BA, Iqbal J, Mahmood T, et al. Plant-mediated synthesis of nickel oxide nanoparticles (NiO) via Geranium wallichianum: characterization and different biological applications. Mater Res Express. 2019;6:0850a7.
  • Khalil AT, Ovais M, Ullah I, et al. Sageretia thea (Osbeck.) modulated biosynthesis of NiO nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential. Artif Cells Nanomed Biotechnol. 2018;46(4):838–852.
  • Iqbal J, Abbasi BA, Ahmad R, et al. Potential phytochemicals in the fight against skin cancer: current landscape and future perspectives. Biomed Pharmacother. 2019;109:1381–1393.
  • Abbasi BA, Iqbal J, Ahmad R, et al. Potential phytochemicals in the prevention and treatment of esophagus cancer: a green therapeutic approach. Pharmacol Rep. 2019;71(4):644–652.
  • Javed B, Nadhman A, Mashwani ZUR. Phytosynthesis of Ag nanoparticles from Mentha longifolia: their structural evaluation and therapeutic potential against HCT116 colon cancer, Leishmanial and bacterial cells. Appl Nanosci. 2020;10:3503–3515.
  • Javed B, Raja NI, Nadhman A, et al. Understanding the potential of bio-fabricated non-oxidative silver nanoparticles to eradicate Leishmania and plant bacterial pathogens. Appl Nanosci. 2020;10(6):2057–2067.
  • Gund M, Roopan SM, Khan FRN, et al. Regioselective O-alkylation: synthesis of 1-{2-[(2-chloroquinolin-3-yl)methoxy]-6-chloro-4-phenylquinolin-3-yl}ethanones. Res Chem Intermed. 2012;38:1111–1118.
  • Khalil AT, Ovais M, Ullah I, et al. Sageretia thea (Osbeck.) mediated synthesis of zinc oxide nanoparticles and its biological applications. Nanomedicine (Lond)). 2017;12(15):1767–1789.
  • Aisida SO, Ugwu K, Akpa PA, et al. Biogenic synthesis and antibacterial activity of controlled silver nanoparticles using an extract of Gongronema latifolium. Mater Chem Phys. 2019;237:121859.
  • Bahadori MB, Zengin G, Bahadori S, et al. Phenolic composition and functional properties of wild mint (Mentha longifolia var. calliantha (Stapf) Briq.). Int J Food Prop. 2018;21:198–208.
  • Javed B, Nadhman A, Razzaq A, et al. One-pot phytosynthesis of nano-silver from Mentha longifolia L.: their characterization and evaluation of photodynamic potential. Mater Res Express. 2020;7(5):55401–55409.
  • Ali M, Kim B, Belfield KD, et al. Green synthesis and characterization of silver nanoparticles using Artemisia absinthium aqueous extract-a comprehensive study. Mater Sci Eng C Mater Biol Appl. 2016;58:359–365.
  • Kalaiselvi D, Mohankumar A, Shanmugam G, et al. Green synthesis of silver nanoparticles using latex extract of Euphorbia tirucalli: a novel approach for the management of root knot nematode, Meloidogyne incognita. Crop Prot. 2019;117:108–114.
  • Muthuraman MS, Nithya S, Vinoth Kumar V, et al. Green synthesis of silver nanoparticles using Nardostachys jatamansi and evaluation of its anti-biofilm effect against classical colonizers. Microb Pathog. 2019;126:1–5.
  • Francis S, Joseph S, Koshy EP, et al. Microwave assisted green synthesis of silver nanoparticles using leaf extract of Elephantopus scaber and its environmental and biological applications. Artif Cells Nanomed Biotechnol. 2018;46(4):795–804.
  • Sharma V, Kaushik S, Pandit P, et al. Green synthesis of silver nanoparticles from medicinal plants and evaluation of their antiviral potential against chikungunya virus. Appl Microbiol Biotechnol. 2019;103(2):881–891.
  • Nadhman A, Nazir S, Ihsanullah Khan M, et al. PEGylated silver doped zinc oxide nanoparticles as novel photosensitizers for photodynamic therapy against Leishmania. Free Radic Biol Med. 2014;77:230–238.
  • Nadhman A, Nazir S, Khan MI, et al. Visible-light-responsive ZnCuO nanoparticles: benign photodynamic killers of infectious protozoans. Int J Nanomedicine. 2015;10:6891–6903.
  • Iqbal G, Faisal S, Khan S, et al. Photo-inactivation and efflux pump inhibition of methicillin resistant Staphylococcus aureus using thiolated cobalt doped ZnO nanoparticles. J Photochem Photobiol B. 2019;192:141–146.
  • Maleki H, Durães L, García-González CA, et al. Synthesis and biomedical applications of aerogels: possibilities and challenges. Adv Colloid Interface Sci. 2016;236:1–27.
  • Ulaeto SB, Mathew GM, Pancrecious JK, et al. Biogenic Ag nanoparticles from neem extract: their structural evaluation and antimicrobial effects against Pseudomonas nitroreducens and Aspergillus unguis (NII 08123). ACS Biomater Sci Eng. 2020;6(1):235–245.
  • Alavi M, Karimi N, Valadbeigi T. Antibacterial, antibiofilm, antiquorum sensing, antimotility, and antioxidant activities of green fabricated Ag, Cu, TiO2, ZnO, and Fe3O4 NPs via Protoparmeliopsis muralis lichen aqueous extract against multi-drug-resistant bacteria. ACS Biomater Sci Eng. 2019;5(9):4228–4243.
  • Somasundaram G, Rajan J. Ascendancy of Polianthes tuberosa, Nerium oleander, Hibiscus rosa sinensis and Dalia flower extracts on CdO nanoparticle morphologies and their effectiveness in photocatalytic and antimicrobial activities. J Inorg Organomet Polym. 2019;29(6):2145–2160.
  • Ismail E, Diallo A, Khenfouch M, et al. RuO2 nanoparticles by a novel green process via Aspalathus linearis natural extract & their water splitting response. J Alloys Compd. 2016;662:283–289.
  • Matinise N, Kaviyarasu K, Mongwaketsi N, et al. Green synthesis of novel zinc iron oxide (ZnFe2O4) nanocomposite via Moringa oleifera natural extract for electrochemical applications. Appl Surf Sci. 2018;446:66–73.
  • Abbasi BA, Iqbal J, Mahmood T, et al. Biofabrication of iron oxide nanoparticles by leaf extract of Rhamnus virgata: Characterization and evaluation of cytotoxic, antimicrobial and antioxidant potentials. Appl Organomet Chem. 2019;33:1–15.
  • Abbasi BA, Iqbal J, Nasir JA, et al. Environmentally friendly green approach for the fabrication of silver oxide nanoparticles: Characterization and diverse biomedical applications. Microsc Res Tech. 2020:1–13.
  • Allahverdiyev AM, Abamor ES, Bagirova M, et al. Antileishmanial effect of silver nanoparticles and their enhanced antiparasitic activity under ultraviolet light. Int J Nanomedicine. 2011;6:2705–2714.
  • Kalangi SK, Dayakar A, Gangappa D, et al. Biocompatible silver nanoparticles reduced from Anethum graveolens leaf extract augments the antileishmanial efficacy of miltefosine. Exp Parasitol. 2016;170:184–192.
  • Deepika S, Selvaraj CI, Roopan SM. Screening bioactivities of Caesalpinia pulcherrima L. swartz and cytotoxicity of extract synthesized silver nanoparticles on HCT116-cell line. Mater Sci Eng C Mater Biol Appl. 2020;106:110279
  • Prabhu D, Arulvasu C, Babu G, et al. Biologically synthesized green silver nanoparticles from leaf extract of Vitex negundo L. induce growth-inhibitory effect on human colon cancer cell line HCT15. Process Biochem. 2013;48(2):317–324.
  • Generalova AN, Chichkov BN, Khaydukov EV. Multicomponent nanocrystals with anti-stokes luminescence as contrast agents for modern imaging techniques. Adv Colloid Interface Sci. 2017;245:1–19.
  • He Z, Zhang Y, Feng N. Cell membrane-coated nanosized active targeted drug delivery systems homing to tumor cells: a review. Mater Sci Eng C Mater Biol Appl. 2020;106:110298