2,752
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Biomolecular assembly on interdigitated electrode nanosensor for selective detection of insulin-like growth factor-1

, , , , , , , & show all
Pages 30-37 | Received 28 Jun 2020, Accepted 13 Dec 2020, Published online: 20 Jan 2021

References

  • Humphrey JD, Holzapfel GA. Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms. J. Biomech. 2012;45(5):805–814
  • Sakalihasan N, Michel JB, Katsargyris A, et al. Abdominal aortic aneurysms. Nat Rev Dis Prim. 2018; 4(1): 34.
  • Schwartz SA, Taljanovic MS, Smyth S, et al. CT findings of rupture, impending rupture, and contained rupture of abdominal aortic aneurysms. AJR Am J Roentgenol. 2007; 188: W57-W62.
  • Danzer D, Becquemin JP. Abdominal aortic aneurysm. In: Geroulakos, G., van Urk, H., Hobson II, R.W., Calligaro, K.D. (Eds.), Vascular surgery: cases. questions and commentaries; Springer-Verlag London. 2018. p. 453.
  • De Rango P, Farchioni L, Fiorucci B, et al. Diabetes and abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2014; 47(3):243–261.
  • Tambyraja AL, Chalmers RTA. Aortic aneurysms. Surgery. 2009; 27 (8): 342-345.
  • Soto B, Gallastegi-Mozos T, Rodríguez C, et al. Circulating CCL20 as a new biomarker of abdominal aortic aneurysm. Sci Rep. 2017;7:17331.
  • Martinez-Pinna R, Ramos-Mozo P, Madrigal-Matute J, et al. Identification of peroxiredoxin-1 as a novel biomarker of abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol. 2011;31(4):935–943.
  • Lindholt JS, Martin-Ventura JL, Urbonavicius S, et al. Insulin-like growth factor i - A novel biomarker of abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2011;42(5):560–562.
  • Yeap BB, Chubb SAP, McCaul KA, et al. Comment on ‘insulin-like growth factor 1’ – a novel biomarker of abdominal aortic aneurysm. Eur J Endocrinol. 2012;166(2):191–197.
  • Golledge J, Tsao PS, Dalman RL, et al. Circulating markers of abdominal aortic aneurysm presence and progression. Circulation. 2008;118(23):2382–2392.
  • Koole D, Van Herwaarden JA, Pasterkamp G, et al. Comment on “insulin-like growth  factor 1 – a novel biomarker of abdominal aortic aneurysm. Eur J Vasc Endovasc Surg. 2012; 43(3):360.
  • Lakshmipriya T, Horiguchi Y, Nagasaki Y. Co-immobilized poly(ethylene glycol)-block-polyamines promote sensitivity and restrict biofouling on gold sensor surface for detecting factor IX in human plasma. Analyst. 2014;139(16):3977–3985.
  • Liu F, Zhang J, Chen R, et al. Highly effective colorimetric and visual detection of ATP by a DNAzyme-aptamer sensor. Chem Biodivers. 2011;8(2):311–316.
  • Gopinath SCB, Perumal V, Rao BS, et al. Voltammetric immunoassay for the human blood clotting factor IX by using nanogapped dielectrode junctions modified with gold nanoparticle-conjugated antibody. Microchim Acta. 2017;184(10):3739–3745.
  • Gopinath SCB, Tang TH, Citartan M, et al. Current aspects in immunosensors. Biosens Bioelectron. 2014;57:292–302.
  • Ng AHC, Uddayasankar U, Wheeler AR. Immunoassays in microfluidic systems. Anal Bioanal Chem. 2010;397(3):991–1007.
  • Wang C, Lakshmipriya T, Gopinath SCB. Amine-aldehyde chemical conjugation on a potassium hydroxide-treated polystyrene ELISA surface for nanosensing an HIV-p24 antigen. Nanoscale Res Lett. 2019;14(1):21.
  • Gopinath SCB, Awazu K, Fujimaki M. Waveguide-mode sensors as aptasensors. Sensors. 2012;12(2):2136–2151.
  • Lakshmipriya T, Fujimaki M, Gopinath SCB, et al. A high-performance waveguide-mode biosensor for detection of factor IX using PEG-based blocking agents to suppress non-specific binding and improve sensitivity. Analyst. 2013b;138(10):2863–2870.
  • Letchumanan I, Gopinath SCB, Md Arshad MK, et al. Gold nano-urchin integrated label-free amperometric aptasensing human blood clotting factor IX: a prognosticative approach for “Royal disease". Biosens Bioelectron. 2019a;131:128–135.
  • Song KM, Jeong E, Jeon W, et al. Aptasensor for ampicillin using gold nanoparticle based dual fluorescence-colorimetric methods. Anal Bioanal Chem. 2012;402(6):2153–2161.
  • Wang Y, Li ZH, Hu DH, et al. Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J Am Chem Soc. 2010;132(27):9274–9276.
  • Cheen OC, Gopinath SCB, Perumal V, et al. Aptamer-based impedimetric determination of the human blood clotting factor IX in serum using an interdigitated electrode modified with a ZnO nanolayer. Microchim Acta. 2017;184(1):117–125.
  • Gopinath SCB, Kumar PKR, Tominaga J. A BioDVD media with multilayered structure is suitable for analyzing biomolecular interactions. J Nanosci Nanotechnol. 2011;11:1–7.
  • Lakshmipriya T, Fujimaki M, Gopinath SCB, et al. Generation of anti-influenza aptamers using the systematic evolution of ligands by exponential enrichment for sensing applications. Langmuir. 2013a;29(48):15107–15115.
  • Letchumanan I, Md Arshad MK, Balakrishnan SR, et al. Gold-nanorod enhances dielectric voltammetry detection of c-reactive protein: A predictive strategy for cardiac failure. Biosens Bioelectron. 2019b;130:40–47.
  • Lv Q, Wang Y, Su C, et al. Human papilloma virus DNA-biomarker analysis for cervical cancer: signal enhancement by gold nanoparticle-coupled tetravalent streptavidin-biotin strategy. Int J Biol Macromol. 2019;134:354–360.
  • Bruno JG, Richarte AM. Development and characterization of an enzyme-linked DNA aptamer-magnetic bead-based assay for human IGF-I in serum. Microchem. J. 2016;124:90–95.
  • Aggarwal S, Qamar A, Sharma V, et al. Abdominal aortic aneurysm: a comprehensive review. Exp Clin Cardiol. 2011; 16(1): 11–15.
  • Baxter BT, Terrin MC, Dalman RL. Medical management of small abdominal aortic aneurysms. Circulation. 2008;117(14):1883–1889.
  • Lindholt JS, Juul S, Fasting H, et al. Screening for abdominal aortic aneurysms: single centre randomised controlled trial. BMJ. 2005;330(7494):750.
  • Lakshmipriya T, Gopinath SCB, Tang T-H. Biotin-streptavidin competition mediates sensitive detection of biomolecules in enzyme linked immunosorbent assay. PLOS One. 2016;11(3):e0151153.
  • Guo S, Li Y, Li R, et al. High-performance detection of an abdominal aortic  aneurysm biomarker by immunosensing. Biotechnol Appl Biochem. 2020;67(3): 383–388.
  • Nivetha AK. Divination of abdominal aortic aneurysm by deploying ultrasonic transducer sensor. Int J Eng Res Technol. 2018;6:1–4.
  • Hong X, Hong X, Zhao H, et al. Improved immunoassay for insulin-like growth factor 1 detection by aminated silica nanoparticle in ELISA. Process Biochem. 2020;91:282–287.
  • Springer F, Schlierf R, Pfeffer JG, et al. Detecting endoleaks after endovascular AAA repair with a minimally invasive implantable, telemetric pressure sensor: an in vitro study. Eur Radiol. 2007; 17(10): 2589–2597.
  • Schlierf R, Görtz M, Rode TS, et al. 2005. Pressure sensor capsule to control the treatmnent of abdominal aorta aneurisms. Digest of technical papers – International Conference on Solid State Sensors and Actuators and Microsystems, TRANSDUCERS ’05. Seoul, South Korea.
  • Ding Y, Tian Q, Dong Y, et al. Gold-silane complexed antibody immobilization on polystyrene ELISA surface for enhanced determination of matrix metalloproteinase-9. Process Biochem. 2021;100:231–236.
  • Zhai J, How TV, Hon B. Design and modelling of a passive wireless pressure sensor. CIRP Ann Manuf Technol. 2010;59 (1): 187–190.
  • Fok M, Bashir M, Fraser H, et al. A novel microwave sensor to detect specific biomarkers in human cerebrospinal fluid and their relationship to cellular ischemia during thoracoabdominal aortic aneurysm repair. J Med Syst. 2015; 39(4):208.
  • Lu B, Liu L, Wang J, et al. Detection of microRNA-335-5p on an interdigitated electrode surface for determination of the severity of abdominal aortic aneurysms. Nano Res Lett. 2020;15:105.