3,822
Views
26
CrossRef citations to date
0
Altmetric
Other

Green synthesis and biomedicinal applications of silver and gold nanoparticles functionalized with methanolic extract of Mentha longifolia

, , , , , , ORCID Icon, , , , & show all
Pages 194-203 | Received 28 Jul 2020, Accepted 09 Feb 2021, Published online: 25 Feb 2021

References

  • Rajeshkumar S, Kannan C, Annadurai G. Synthesis and characterization of antimicrobial silver nanoparticles using marine brown seaweed Padina tetrastromatica. Drug Invent. 2012;4(10):511–513.
  • Ahmed S, Ahmad M, Swami BL, et al. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res. 2016;7(1)17-28.
  • Bar H, Bhui DK, Sahoo GP, et al. Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colliod Surf. A. 2009;339(1–3):134–139.
  • Bachheti RK, Fikadu A, Bachheti A, et al. Biogenic fabrication of nanomaterials from flower-based chemical compounds, characterization and their various applications: a review. Saudi J Biol Sci. 2020;27(10):2551–2562.
  • Siddiqi KS, Husen A. Current status of plant metabolite-based fabrication of copper/copper oxide nanoparticles and their applications: a review. Biomater Res. 2020;24:11.
  • Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011;13(10):2638–2650.
  • Korbekandi H, Iravani S, Abbasi S. Production of nanoparticles using organisms. Crit Rev Biotechnol. 2009;29(4):279–306.
  • Das J, Das MP, Velusamy P. Sesbania grandiflora leaf extract mediated green synthesis of antibacterial silver nanoparticles against selected human pathogens. Spectrochim Acta A Mol Biomol Spectrosc. 2013;104:265–270.
  • Mallikarjuna K, Narasimha G, Dillip GR, et al. Green synthesis of silver nanoparticles using Ocimum leaf extract and their characterization. Digest J Nano and Biostruct. 2011;6(1):181–186.
  • Isaac RS, Sakthivel G, Murthy CH. Green synthesis of gold and silver nanoparticles using Averrhoa bilimbi fruit extract. J Nanotech. 2013;2013:1–6.
  • Islam NU, Jalil K, Shahid M, et al. Pistacia integerrima gall extract mediated green synthesis of gold nanoparticles and their biological activities. Arabian J Chem. 2019;12(8):2310–2319.
  • Kumar PPNV, Pammi SVN, Kollu P, et al. Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti bacterial activity. Indus Crops Prod. 2014;52:562–566.
  • Ali K, Dwivedi S, Azam A, et al. Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates. J Colloid Interface Sci. 2016;472:145–156.
  • Beshah F, Hunde Y, Getachew M, et al. Ethnopharmacological, phytochemistry and other potential applications of Dodonaea genus: A comprehensive review. Curr Biotechnol. 2020;2:103–119.
  • Huang J, Li Q, Sun D, et al. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology. 2007;18(10):105104.
  • Chandran SP, Chaudhary M, Pasricha R, et al. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog. 2006;22(2):577–583.
  • Ankamwar B, Damle C, Ahmad A, et al. Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J Nanosci Nanotechnol. 2005;5(10):1665–1671.
  • Song JY, Jang H-K, Kim BS. Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochem. 2009;44(10):1133–1138.
  • Kasthuri J, Veerapandian S, Rajendiran N. Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids Surf B Biointerfaces. 2009;68(1):55–60.
  • Vijayan R, Joseph S, Mathew B. Anticancer, antimicrobial, antioxidant, and catalytic activities of green-synthesized silver and gold nanoparticles using Bauhinia purpurea leaf extract. Bioprocess Biosyst Eng. 2019;42(2):305–319.
  • Ali K, Saquib Q, Ahmed B, et al. Bio-functionalized CuO nanoparticles induced apoptotic activities in human breast carcinoma cells and toxicity against Aspergillus flavus: an in vitro approach. J Photochem Photobiol Biol. 2020;91:387–397.
  • Ghramh HA, Khan KA, Ibrahim EH. Biological activities of Euphorbia peplus leaves ethanolic extract and the extract fabricated gold nanoparticles (AuNPs). Molecules. 2019;24(7):1431.
  • Valsalam S, Agastian P, Esmail GA, et al. Biosynthesis of silver and gold nanoparticles using Musa acuminata colla flower and its pharmaceutical activity against bacteria and anticancer efficacy. J Photochem Photobiol B Biol. 2019;201:111670.
  • Ali K, Ahmed B, Ansari SM, Saquib Q, et al. Comparative in situ ROS mediated killing of bacteria with bulk analogue, Eucalyptus leaf extract (ELE)-capped and bare surface copper oxide nanoparticles. Mater Sci Eng C Mater Biol Appl. 2019;100:747–758.
  • Siddiqi KS, Husen A, Rao RAK. A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnology. 2018;16(1):14.
  • Bunsawat J, Elliott NE, Hertweck KL, et al. Phylogenetics of Mentha (Lamiaceae): evidence from chloroplast DNA sequences. Syst Bot. 2004;29(4):959–964.
  • Harley RM, Atkins S, Budantsev AL, et al. Labiatae. The families and genera of vascular plants, VII, flowering plants, dicotyledons, lamiales, except acanthaceae including avicenniaceae. Berlin Heidelberg: Springer; 2004. pp 167–275.
  • Codd LEW: Lamiaceae: Flora of Southern Africa.Botanical Research Institute. Pretoria. 1985;28(4):1–247.
  • Brickell C, Cole T, Cathey HM. The American Horticultural Society encyclopedia of plants and flowers (American Horticultural Society Practical Guides). New York, NY, USA: DK Publishing; 2002.
  • Van Wyk B-E, Oudtshoorn B, Gericke N. Medicinal plants of South Africa. Pretoria, South Africa: Briza; 1997.
  • Foster S, Duke JA. A field guide to medicinal plants and herbs of eastern and central North America. Vol. 2. New York: Houghton Mifflin Harcourt; 2000.
  • Oyedeji OA, Afolayan AJ, Eloff JN. Comparative study of the essential oil composition and antimicrobial activity of Leonotis leonurus and L. ocymifolia in the Eastern Cape. South Africa S Afr J Bot. 2005;71(1):114–116.
  • Amin GR. Popular medicinal plants of Iran. Vol. 1. Tehran: Iranian Research Institute of Medicinal Plants; 1991.
  • Gulluce M, Sahin F, Sokmen M, et al. Antimicrobial and antioxidant properties of the essential oils and methanol extract from Mentha longifolia L. ssp. longifolia. Food Chem. 2007;103(4):1449–1456.
  • Shah AJ, Bhulani NN, Khan SH, et al. Calcium channel blocking activity of Mentha longifolia L. explains its medicinal use in diarrhoea and gut spasm. Phytother Res. 2010;24(9):1392–1397.
  • Mimica-Dukic N, Popovic M, Jakovljevic V, et al. Pharmacological studies of Mentha longifolia phenolic extracts. II. Hepatoprotective activity. Pharm. Bio. 1999;37(3):221–224.
  • Odeyemi OO, Masika P, Afolayan AJ. Insecticidal activities of essential oil from the leaves of Mentha longifolia L. subsp. capensis against Sitophilus zeamais (Motschulsky)(Coleoptera: Curculionidae). Afr Entomol. 2008;16(2):220–225.
  • Nagell A, Hefendehl FW, Hoyer J. Two Stereoisomeric 1, 2-Epoxymenthylacetates from an Oil of Mentha rotundifolia x Mentha longifolia. Zeitschrift Fur Naturforschung Section C Biosci. 1974;29(5-6):294–295.
  • Ali MS, Saleem M, Ahmad W, et al. A chlorinated monoterpene ketone, acylated Î2-sitosterol glycosides and a flavanone glycoside from Mentha longifolia (Lamiaceae). Phytochemistry. 2002;59(8):889–895.
  • Idrissi AI, Fkih-Tetouani S. Phytochemical study of Mentha longifolia of Morocco. Fitoterapia. 2001;72(5):596–598.
  • Al-Bayati FA. Isolation and identification of antimicrobial compound from Mentha longifolia L. leaves grown wild in Iraq. Ann Clin Microbiol Antimicrob. 2009;8(1):20.
  • Javed B, Nadhman A, Mashwani ZUR. Optimization, characterization and antimicrobial activity of silver nanoparticles against plant bacterial pathogens phyto-synthesized by Mentha longifolia. Mater Res Express. 2020;7(8):085406.
  • Uddin G, Rauf A, Siddiqui BS, et al. Preliminary comparative phytochemical screening of Diospyros lotus Stewart. Mid J Sci Res. 2011;10(1):78–81.
  • Uddin G, Rauf A, Qaisar M, et al. Preliminary phytochemical screening and antimicrobial activity of Hedera helix. Mid J Sci Res. 2011;8(1):198–202.
  • Uddin G, Rauf A, Arfan M, et al. Preliminary phytochemical screening and antioxidant activity of Bergenia caliata. Mid J Sci Res. 2012;11(8):1140–1142.
  • Heatley N. A method for the assay of penicillin. Biochem J. 1944;38(1):61–65.
  • Owuama CI. Determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) using a novel dilution tube method. Afr J Microbiol Res. 2017;11(23):977–980.
  • Rauf A, Khan R, Khan H, et al. Antipyretic and antinociceptive potential of extract/fractions of Potentilla and its isolated compound, acacetin. BMC Compl Alternative Med. 2014;14(1):448.
  • Rauf A, Uddin G, Siddiqui BS, et al. In-vivo antinociceptive, anti-inflammatory and antipyretic activity of pistagremic acid isolated from Pistacia integerrima. Phytomedicine. 2014;21(12):1509–1515.
  • Koster R. Acetic acid for analgesic screening. Fed Proc. 1959;18:412–417.
  • Islam NU, Jalil K, Shahid M, Rauf A, et al. Green synthesis and biological activities of gold nanoparticles functionalized with Salix alba. Arab J Chem. 2019;12(8):2914–2925.
  • Nisar M, Khan SA, Shah MR, et al. Moxifloxacin-capped noble metal nanoparticles as potential urease inhibitors. New J Chem. 2015;39(10):8080–8086.
  • Zahoor MK, Zahoor MA, Mubarik MS, et al. Insecticidal, biological and biochemical response of Musca domestica (Diptera: Muscidae) to some indigenous weed plant extracts. Saudi J Biol Sci. 2020;27(1):106–116.
  • Kareru P, Keriko J, Gachanja A, et al. Direct detection of triterpenoid saponins in medicinal plants. Afr J Tradit Complement Altern Med. 2008;5(1):56–60.
  • Almutairi MS, Ali M. Direct detection of saponins in crude extracts of soapnuts by FTIR. Nat Prod Res. 2015;29(13):1271–1275.
  • Kumaravel S, Muthukumaran P, Phytochemical TN, et al. Analysis of Papaver somniferum L. J Pharm Biol Sci. 2019;7(1):1–8.
  • Ali K, Ahmed B, Khan MS, et al. Differential surface contact killing of pristine and low EPS Pseudomonas aeruginosa with Aloevera capped hematite (α-Fe2O3) nanoparticles. J Photochem Photobiol Biol. 2018;188:146–158
  • Yassin MT, Mostafa AA, Al-Askar AA. Anticandidal and anti-carcinogenic activities of Mentha longifolia (Wild Mint) extracts in vitro. J King Saud Univ Sci. 2020;32(3):2046–2052.
  • Salavati-Niasari M, Davar F, Mahmoudi TJP. A simple route to synthesize nanocrystalline nickel ferrite (NiFe2O4) in the presence of octanoic acid as a surfactant. Polyhedron. 2009;28(8):1455–1458
  • Dovbeshko GI, Gridina NY, Kruglova EB, et al. FTIR spectroscopy studies of nucleic acid damage. Talanta. 2000;53(1):233–246.
  • Depciuch J, Kaznowska E, Szmuc K, et al. Comparing paraffined and deparaffinized breast cancer tissue samples and an analysis of Raman spectroscopy and infrared methods. Infrared Phys Technol. 2016;76:217–226.
  • Ateeq M, Shah MR, Ali H, et al. Hepatoprotective and urease inhibitory activities of garlic conjugated gold nanoparticles. New J Chem. 2015;39(6):5003–5007.
  • Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev. 2009;2(5):270–278.
  • Lobo V, Patil A, Phatak A, et al. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev. 2010;4(8):118–126.
  • Belelli D, Lambert JJ. Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat Rev Neurosci. 2005;6(7):565–575.