4,614
Views
23
CrossRef citations to date
0
Altmetric
Research Article

Inhibiting the PI3K/AKT/mTOR signalling pathway with copper oxide nanoparticles from Houttuynia cordata plant: attenuating the proliferation of cervical cancer cells

, , , , , , , , ORCID Icon & show all
Pages 240-249 | Received 31 Jul 2020, Accepted 04 Feb 2021, Published online: 10 Mar 2021

References

  • Khazaei Z, Sohrabivafa M, Mansori K, et al. Incidence and mortality of cervix cancer and their relationship with the human development index in 185 countries in the world: an ecology study in 2018. Adv Hum Biol. 2019;9(3):222–227.
  • Arbyn M, Weiderpass E, Bruni L, et al. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide. Lancet Glob Health. 2020;8(2):e191–e202.
  • Arbyn M, Xu L, Simoens C, et al. Prophylactic vaccination against human papillomaviruses to prevent cervical cancer and its precursors. Cochrane Database Syst Rev. 2018;5:CD009069.
  • Alexandra Hofsjö, Nina Bohm-Starke, Karin Bergmark, Britt Masironi, Lena Sahlin. (2019) Sex steroid hormone receptor expression in the vaginal wall in cervical cancer survivors after radiotherapy. Acta Oncologica 58:8, pages 1107–1115.
  • Rizvi SAA, Saleh AM. Application of nanoparticle system in drug delivery technology. Saudi Pharm J. 2018;26:64–70.
  • Frezza M, Hindo S, Chen D, Davenport A, Schmitt S, Tomco D, Dou QP. Novel metals and metal complexes as platforms for cancer therapy. Curr Pharm Des. 2010;16(16):1813–1825.
  • Nasrollahzadeh M, Maham M, Sajadi SM. Green synthesis of CuO nanoparticles by aqueous extract of Gundelia tournefortii and evaluation of their catalytic activity for the synthesis of N-monosubstituted ureas and reduction of 4-nitrophenol. J Colloid Interface Sci. 2015;455:245–253.
  • Priya DD, Elango G, Roopan SM, et al. Abutilon indicum mediated CuO nanoparticles: eco-approach, optimum process of congo red dye degradation, and mathematical model for multistage operation. Chem Select. 2020;5(28):8572–8576.
  • Devipriya D, Roopan SM. Cissus quadrangularis mediated ecofriendly synthesis of copper oxide nanoparticles and its antifungal studies against Aspergillus niger, Aspergillus flavus. Mater Sci Eng C Mater Biol Appl. 2017;80:38–44.
  • Gnanavel V, Palanichamy V, Roopan SM. Biosynthesis and characterization of copper oxide nanoparticles and its anticancer activity on human colon cancer cell lines (HCT-116). J Photochem Photobiol B. 2017;171:133–138.
  • Wang JH, Bose S, Shin NR, Chin YW, Choi YH, Kim H. Pharmaceutical Impact of Houttuynia Cordata and Metformin Combination on High-Fat-Diet-Induced Metabolic Disorders: Link to Intestinal Microbiota and Metabolic Endotoxemia. Front Endocrinol (Lausanne). 2018(24);9:620.
  • Kumar M, Prasad SK, Krishnamurthy S, Hemalatha S. Antihyperglycemic Activity of Houttuynia cordata Thunb. in Streptozotocin-Induced Diabetic Rats. Adv Pharmacol Sci. 2014;2014:809438.
  • Lai KC, Chiu YJ, Tang YJ, et al. Houttuynia cordata Thunb extract inhibits cell growth and induces apoptosis inhuman primary colorectal cancer cells. Anticancer Res. 2010;30(9):3549–3556.
  • Lau KM, Lee KM, Koon CM, et al. Immunomodulatory and anti-SARS activities of Houttuynia cordata. J Ethnopharmacol. 2008;118(1):79–85.
  • Nuengchamnong N, Krittasilp K, Ingkaninan K. Rapid screening and identification of antioxidants in aqueous extracts of Houttuynia cordata using LC–ESI–MS coupled with DPPH assay. Food Chem. 2009;117(4):750–756.
  • Chang JS, Chiang LC, Chen CC, et al. Antileukemic activity of Bidens pilosa L. var. minor (Blume) Sherff and Houttuynia cordata Thunb. Am J Chin Med. 2001;29(2):303–312.
  • Chen YY, Liu JF, Chen CM, et al. A study of the antioxidative and antimutagenic effects of Houttuynia cordata Thunb. using an oxidized frying oil-fed model. J Nutr Sci Vitaminol. 2003;49(5):327–333.
  • Chiang LC, Chang JS, Chen CC, et al. Anti-Herpes simplex virus activity of Bidens pilosa and Houttuynia cordata. Am J Chin Med. 2003;31(3):355–362.
  • Lu H, Liang Y, Yi L, et al. Anti-inflammatory effect of Houttuynia cordata injection. J Ethnopharmacol. 2006;104(1–2):245–249.
  • Kim IS, Kim JH, Kim JS, et al. The inhibitory effect of Houttuynia cordata extract on stem cell factor-induced HMC-1 cell migration. J Ethnopharmacol. 2007;112(1):90–95.
  • Kim SK, Ryu SY, No J, et al. Cytotoxic alkaloids from Houttuynia cordata. Arch Pharm Res. 2001;24(6):518–521.
  • Li GZ, Chai OH, Lee MS, et al. Inhibitory effects of Houttuynia cordata water extracts on anaphylactic reaction and mast cell activation. Biol Pharm Bull. 2005;28(10):1864–1868.
  • Ng LT, Yen FL, Liao CW, et al. Protective effect of Houttuynia cordata extract on bleomycin-induced pulmonary fibrosis in rats. Am J Chin Med. 2007;35(3):465–475.
  • Park E, Kum S, Wang C, et al. Anti-inflammatory activity of herbal medicines: inhibition of nitric oxide production and tumor necrosis factor-alpha secretion in an activated macrophage-like cell line. Am J Chin Med. 2005;33(3):415–424.
  • Karlsson HL, Toprak MS, Fadeel B. Chapter 4 – toxicity of metal and metal oxide nanoparticles. In: Nordberg GF, Fowler BA, Nordberg M, editors. Handbook on the toxicology of metals. 4th ed. Burlington: Academic Press; 2015. p. 75–112.
  • Abbas S, Nasreen S, Haroon A, Ashraf MA. Synhesis of Silver and Copper Nanoparticles from Plants and Application as Adsorbents for Naphthalene decontamination. Saudi J Biol Sci. 2020;27(4):1016–1023.
  • da Silva PB, Machado RTA, Pironi AM, Alves RC, de Araújo PR, Dragalzew AC, Dalberto I, Chorilli M. Recent Advances in the Use of Metallic Nanoparticles with Antitumoral Action - Review. Curr Med Chem. 2019;26(12):2108–2146.
  • Sarkar J, Chakraborty N, Chatterjee A, Bhattacharjee A, Dasgupta D, Acharya K. Green Synthesized Copper Oxide Nanoparticles Ameliorate Defence and Antioxidant Enzymes in Lens culinaris. Nanomaterials (Basel). 2020(12);10(2):312.
  • Khandel P, Yadaw RK, Soni DK, et al. Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects. J Nanostruct Chem. 2018;8(3):217–254.
  • Peralta-Videa JR, Huang Y, Parsons JG, et al. Plant-based green synthesis of metallic nanoparticles: scientific curiosity or a realistic alternative to chemical synthesis? Nanotechnol Environ Eng. 2016;1(1):4.
  • Shah M, Fawcett D, Sharma S, et al. Green synthesis of metallic nanoparticles via biological entities. Materials. 2015;8(11):7278–7308.
  • Singh J, Dutta T, Kim KH, et al. 'Green' synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol. 2018;16(1):84.
  • Della Pelle F, Scroccarello A, Scarano S, Compagnone D (2019) Silver nanoparticles-based plasmonic assay for the determination of sugar content in food matrices. Anal Chim Acta 1051:129–137.
  • Raffi M, Mehrwan S, Bhatti TM, Akhter JI, Hameed A, Yawar W, ul Hasan MM. Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Annals of microbiology. 2010;60(1):75–80.
  • Mali SC, Dhaka A, Githala CK, et al. Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and antifungal properties. Biotechnol Rep. 2020;27:e00518.
  • Das PE, Abu-Yousef IA, Majdalawieh AF, et al. Green synthesis of encapsulated copper nanoparticles using a hydroalcoholic extract of Moring oleifera leaves and assessment of their antioxidant and antimicrobial activities. Molecules. 2020;25(3):555.
  • Mariadoss AVA, Saravanakumar K, Sathiyaseelan A, et al. Folic acid functionalized starch encapsulated green synthesized copper oxide nanoparticles for targeted drug delivery in breast cancer therapy. Int J Biol Macromol. 2020;164:2074–2084.
  • Saravanakumar K, Shanmugam S, Varukattu NB, et al. Biosynthesis and characterization of copper oxide nanoparticles from indigenous fungi and its effect of photothermolysis on human lung carcinoma. J Photochem Photobiol B. 2019;190:103–109.
  • Abou-Nassar K, Brown JR. Novel agents for the treatment of chronic lymphocytic leukemia. Clin Adv Hematol Oncol. 2010;8(12):886–895.
  • Chen Y-F, Yang J-S, Chang W-S, et al. Houttuynia cordata Thunb extract modulates G0/G1 arrest and Fas/CD95-mediated death receptor apoptotic cell death in human lung cancer A549 cells. J Biomed Sci. 2013;20:18.
  • Jeong JB, Hong S, Eo H, et al. Houttuynia cordata Thunberg exhibits anti-tumorigenic activity in human gastric cancer cells. Korean J Herbol. 2013;28(6):155–160.
  • Subhawa S, Chewonarin T, Banjerdpongchai R. The effects of Houttuynia cordata Thunb and Piper ribesioides Wall extracts on breast carcinoma cell proliferation, migration, invasion and apoptosis. Molecules. 2020;25(5):1196.
  • Tang Y, Yang J, Lin C, et al. Houttuynia cordata Thunb extract induces apoptosis through mitochondrial-dependent pathway in HT-29 human colon adenocarcinoma cells. Oncol Rep. 2009;22(5):1051–1056.
  • Porta C, Paglino C, Mosca A. Targeting PI3K/Akt/mTOR signaling in cancer. Front Oncol. 2014;4:64.
  • Tapia O, Riquelme I, Leal P, et al. The PI3K/AKT/mTOR pathway is activated in gastric cancer with potential prognostic and predictive significance. Virchows Arch. 2014;465(1):25–33.