1,964
Views
9
CrossRef citations to date
0
Altmetric
Research Article

TiO2 nanotubes regulate histone acetylation through F-actin to induce the osteogenic differentiation of BMSCs

, , , , , , & show all
Pages 398-406 | Received 04 Dec 2020, Accepted 21 Mar 2021, Published online: 29 Apr 2021

References

  • Scarano A, Carinci F, Orsini T, et al. Titanium implants coated with a bifunctional molecule with antimicrobic activity: a rabbit study. Materials. 2020;13:3613–3245.
  • Shiel AI, Ayre WN, Blom AW, et al. Development of a facile fluorophosphonate-functionalised titanium surface for potential orthopaedic applications. J Orthop Translat. 2020;23:647–653.
  • Qiaoxia L, Yujie Z, Meng Y, et al. Hydroxyapatite/tannic acid composite coating formation based on Ti modified by TiO nanotubes. Colloids Surf B Biointerfaces. 2020;196:3472–3486.
  • Costa Valente ML, Oliveira TT, Kreve S, et al. Analysis of the mechanical and physicochemical properties of Ti-6Al-4 V discs obtained by selective laser melting and subtractive manufacturing method. J Biomed Mater Res. 2021;109:420–865.
  • He P, Zhang H, Li Y, et al. 1α,25-Dihydroxyvitamin D3-loaded hierarchical titanium scaffold enhanced early osseointegration. Mater Sci Eng C Mater Biol Appl. 2020;109:1159–1168.
  • Bartkowiak A, Zarzycki A, Kac S, et al. Mechanical properties of different nanopatterned TiO2 substrates and their effect on hydrothermally synthesized bioactive hydroxyapatite coatings. Materials. 2020;13:5290.
  • Li Y, Song Y, Ma A, et al. Surface immobilization of TiO2 nanotubes with bone morphogenetic protein-2 synergistically enhances initial preosteoblast adhesion and osseointegration. Biomed Res Int. 2019;23:1206–1223.
  • Jiang N, Du P, Qu W, et al. The synergistic effect of TiO2 nanoporous modification and platelet-rich plasma treatment on titanium-implant stability in ovariectomized rats. Int J Nanomedicine. 2016;11:4719–4733.
  • Jafari S, Mahyad B, Hashemzadeh H, et al. Biomedical applications of TiO nanostructures: recent advances. Int J Nanomedicine. 2020;15:487–498.
  • Yadav V, Banerjee DS, Tabatabai AP, et al. Filament nucleation tunes mechanical memory in active polymer networks. Adv Funct Mater. 2019;29:2149–2158.
  • Chang Y-C, Wu J-W, Wang C-W, et al. Hippo signaling-mediated mechanotransduction in cell movement and cancer metastasis. Front Mol Biosci. 2019;6:867–878.
  • Zeng Y, Zhang B, Liu X, et al. Astragaloside IV alleviates puromycin aminonucleoside-induced podocyte cytoskeleton injury through the Wnt/PCP pathway. Am J Transl Res. 2020;12:318–326.
  • Wang H, Jiang Y, Li H, et al. Carbachol protects the intestinal barrier in severe acute pancreatitis by regulating Cdc42/F-actin cytoskeleton. Exp Ther Med. 2020;20:261–278.
  • Qi Y, Liang X, Dai F, et al. RhoA/ROCK pathway activation is regulated by AT1 receptor and participates in smooth muscle migration and dedifferentiation via promoting actin cytoskeleton polymerization. Int J Mol Sci. 2020;21:621–631.
  • Usik MA, Ogneva IV. Cytoskeleton structure in mouse sperm and testes after 30 days of hindlimb unloading and 12 hours of recovery. Cell Physiol Biochem. 2018;51:375–326.
  • Rachubik P, Szrejder M, Rogacka D, et al. The TRPC6-AMPK pathway is involved in insulin-dependent cytoskeleton reorganization and glucose uptake in cultured rat podocytes. Cell Physiol Biochem. 2018;51:393–496.
  • Wiese M, Hamdan FH, Kubiak K, et al. Combined treatment with CBP and BET inhibitors reverses inadvertent activation of detrimental super enhancer programs in DIPG cells. Cell Death Dis. 2020;11:257–263.
  • Albaugh BN, Denu JM. Catalysis by protein acetyltransferase Gcn5. Biochim Biophys Acta Gene Regul Mech. 2020;36:1248–1259.
  • Mutlu B, Puigserver P. GCN5 acetyltransferase in cellular energetic and metabolic processes. Biochim Biophys Acta Gene Regul Mech. 2020;28:618–629.
  • Chang Y, Shao Y, Liu Y, et al. Mechanical strain promotes osteogenic differentiation of mesenchymal stem cells on TiO2 nanotubes substrate. Biochem Biophys Res Commun. 2019;511:840–846.
  • Xia P, Wang X, Qu Y, et al. TGF-β1-induced chondrogenesis of bone marrow mesenchymal stem cells is promoted by low-intensity pulsed ultrasound through the integrin-mTOR signaling pathway. Stem Cell Res Ther. 2017;8:281–296.
  • Pal B, Das B. In vitro culture of naïve human bone marrow mesenchymal stem cells: a stemness based approach. Front Cell Dev Biol. 2017;5:69–73.
  • Zhang W, Xu Y, Chen G, et al. Dynamic single-vesicle tracking of cell-bound membrane vesicles on resting, activated, and cytoskeleton-disrupted cells. Biochim Biophys Acta Biomembr. 2019;1861:2331–2342.
  • Michaelides MR, Kluge A, Patane M, et al. Discovery of spiro oxazolidinediones as selective, orally bioavailable inhibitors of p300/CBP histone acetyltransferases. ACS Med Chem Lett. 2018;9:28–128.
  • Petty EL, Pillus L. Cell cycle roles for GCN5 revealed through genetic suppression. Biochim Biophys Acta Gene Regul Mech. 2020;21:628–637.
  • Zhang E, Yang Y, Chen S, et al. Bone marrow mesenchymal stromal cells attenuate silica-induced pulmonary fibrosis potentially by attenuating Wnt/β-catenin signaling in rats. Stem Cell Res Ther. 2018;9:149–159.
  • Koutelou E, Farria AT, Dent SYR. Complex functions of Gcn5 and Pcaf in development and disease. Biochim Biophys Acta Gene Regul Mech. 2020;53:2158–2169.
  • Naumann H, Rathjen T, Poy MN, et al. The RhoGAP Stard13 controls insulin secretion through F-actin remodeling. Mol Metab. 2018;8:96–696.
  • Li Z, Li M, Du M, et al. Dephosphorylation enhances postmortem degradation of myofibrillar proteins. Food Chem. 2018;45:841–853.
  • Liu X, Hou W, He L, et al. AMOT130/YAP pathway in topography-induced BMSC osteoblastic differentiation. Colloids Surf B Biointerfaces. 2019;82:2337–2349.
  • Kim S, Shevde NK, Pike JW. 1,25-Dihydroxyvitamin D3 stimulates cyclic vitamin D receptor/retinoid X receptor DNA-binding, co-activator recruitment, and histone acetylation in intact osteoblasts. J Bone Miner Res. 2015;20:427–439.