2,053
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Anti-microbial and anti-cancer activities of Mn0.5Zn0.5DyxFe2-xO4 (x ≤ 0.1) nanoparticles

, , , ORCID Icon, , , , & show all
Pages 493-499 | Received 17 Feb 2021, Accepted 27 May 2021, Published online: 23 Jun 2021

References

  • Zielińska A, Martins-Gomes C, Ferreira NR, Silva AM, et al. Anti-inflammatory and anti-cancer activity of citral: optimization of citral-loaded solid lipid nanoparticles (SLN) using experimental factorial design and LUMiSizer®. Int J Pharm. 2018;553(1–2):428–440.
  • Al-Jamal KT, Bai J, Wang JT, et al. Magnetic drug targeting: preclinical in vivo studies, mathematical modeling, and extrapolation to humans. Nano Lett. 2016;16(9):5652–5660.
  • Amiri S, Shokrollahi H. The role of cobalt ferrite magnetic nanoparticles in medical science. Mater Sci Eng C Mater Biol Appl. 2013;33(1):1–8.
  • Zablotskii V, Polyakova T, Lunov O, et al. How a high-gradient magnetic field could affect cell life. Sci Rep. 2016;6:37407.
  • Demirci H, Slimani N, Pawar M, et al. Magnetic hyperthermia in Y79 retinoblastoma and ARPE-19 retinal epithelial cells: tumor selective apoptotic activity of iron oxide nanoparticle. Transl Vis Sci Technol. 2019;8(5):18.
  • Gianneli M, Polo E, Lopez H, et al. Label-free in-flow detection of receptor recognition motifs on the biomolecular corona of nanoparticles. Nanoscale. 2018;10(12):5474–5481.
  • Tietze R, Zaloga J, Unterweger H, et al. Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem Biophys Res Commun. 2015;468(3):463–470.
  • Zasońska BA, Hlídková H, Petrovský E, et al. Monodisperse magnetic poly(glycidyl methacrylate) microspheres for isolation of autoantibodies with affinity for the 46 kDa form of unconventional Myo1C present in autoimmune patients. Mikrochim Acta. 2018;185(5):262.
  • Lima-Tenório MK, Pineda EA, Ahmad NM, et al. Magnetic nanoparticles: in vivo cancer diagnosis and therapy. Int J Pharm. 2015;493(1–2):313–327.
  • Subramanian C, Kuai R, Zhu Q, et al. Synthetic high-density lipoprotein nanoparticles: a novel therapeutic strategy for adrenocortical carcinomas. Surgery. 2016;159(1):284–294.
  • Chiang CS, Lin YJ, Lee R, et al. Combination of fucoidan-based magnetic nanoparticles and immunomodulators enhances tumour-localized immunotherapy. Nature Nanotech. 2018;13(8):746–754.
  • Moskvin M, Babič M, Reis S, et al. Biological evaluation of surface-modified magnetic nanoparticles as a platform for colon cancer cell theranostics. Colloids Surf B Biointerfaces. 2018;161:35–41.
  • Sharifi M, Attar F, Saboury AA, Akhtari K, Hooshmand N, et al. Plasmonic gold nanoparticles: optical manipulation, imaging, drug delivery and therapy. J Control Release. 2019;311–312:170–189.
  • Abbasi BA, Iqbal J, Ahmad R, et al. Bioactivities of Geranium wallichianum Leaf extracts conjugated with zinc oxide nanoparticles. Biomolecules. 2019;10(1):38.
  • Abbas S, Rashid F, Ulker E, et al. Anticancer evaluation of a manganese complex on HeLa and MCF-7 cancer cells: design, deterministic solvothermal synthesis approach, Hirshfeld analysis, DNA binding, intracellular reactive oxygen species production, electrochemical characterization and density functional theory. J Biomol Struct Dyn. 2020;39(3):1068–1081.
  • Bijari N, Falsafi M, Pouraghajan K, et al. Synthesis and spectroscopic characterization of new sulfanilamide-functionalized magnetic nanoparticles, and the usability for carbonic anhydrase purification: is there perspective for ‘cancer treatment’ application? J Biomol Struct Dyn. 2020;2020:1–14.
  • Esmaili M, Dezhampanah H, Hadavi M. Surface modification of super paramagnetic iron oxide nanoparticles via milk casein for potential use in biomedical areas. J Biomol Struct Dyn. 2020;39(3):977–987.
  • Poshteh Shirani M, Rezaei B, Khayamian T, et al. Folate receptor-targeted multimodal fluorescence mesosilica nanoparticles for imaging, delivery palladium complex and in vitro G-quadruplex DNA interaction. J Biomol Struct Dyn. 2018;36(16):4156–4169.
  • Shahabadi N, Razlansari M, Zhaleh H. In vitro cytotoxicity studies of smart pH-sensitive lamivudine-loaded CaAl-LDH magnetic nanoparticles against Mel-Rm and A-549 cancer cells. J Biomol Struct Dyn. 2020;2020:1–3.
  • Mehrabi M, Ghasemi MF, Rasti B, et al. Nanoporous iron oxide nanoparticle: hydrothermal fabrication, human serum albumin interaction and potential antibacterial effects. J Biomol Struct Dyn. 2021;39(7):2595–2606.
  • Daglioglu C, Kaci FN. Cascade therapy with doxorubicin and survivin-targeted tailored nanoparticles: an effective alternative for sensitization of cancer cells to chemotherapy. Int J Pharm. 2019;561:74–81.
  • Faghfoori MH, Nosrati H, Rezaeejam H, et al. Anticancer effect of X-Ray triggered methotrexate conjugated albumin coated bismuth sulfide nanoparticles on SW480 colon cancer cell line. Int J Pharm. 2020;582:119320.
  • Koo JS, Lee SY, Azad MOK, et al. Development of iron(II) sulfate nanoparticles produced by hot-melt extrusion and their therapeutic potentials for colon cancer. Int J Pharm. 2019;558:388–395.
  • Sabra R, Billa N, Roberts CJ. Cetuximab-conjugated chitosan-pectinate (modified) composite nanoparticles for targeting colon cancer. Int J Pharm. 2019;572:118775.
  • Abu-Elghait M, Hasanin M, Hashem AH, et al. Ecofriendly novel synthesis of tertiary composite based on cellulose and myco-synthesized selenium nanoparticles: characterization, antibiofilm and biocompatibility. Int J Biol Macromol. 2021;175:294–303.
  • Shaheen TI, Amr F, Salem SS. Integration of cotton fabrics with biosynthesized CuO nanoparticles for bactericidal activity in the terms of their cytotoxicity assessment. Ind Eng Chem Res. 2021;60(4):1553–1563.
  • Arasu MV, Madankumar A, Theerthagiri J, et al. Synthesis and characterization of ZnO nanoflakes anchored carbon nanoplates for antioxidant and anticancer activity in MCF7 cell lines. Mater Sci Eng C Mater Biol Appl. 2019;102:536–540.
  • Rehman S, Almessiere MA, Khan FA, et al. Synthesis and biological characterization of Mn0.5Zn0.5EuxDyxFe1.8-2xO4 nanoparticles by sonochemical approach. Mater Sci Eng C Mater Biol Appl. 2020;109:110534.
  • Zheng L, Zhou B, Qiu X, et al. Direct assembly of anticancer drugs to form Laponite-based nanocomplexes for therapeutic co-delivery. Mater Sci Eng C Mater Biol Appl. 2019;99:1407–1414.
  • Akhtar S, Khan FA, Buhaimed A. Functionalized magnetic nanoparticles attenuate cancer cells proliferation: transmission electron microscopy analysis. Microsc Res Tech. 2019;82(7):983–992.
  • Akhtar S, Rehman S, Almessiere MA, et al. Synthesis of Mn0. 5Zn0. 5SmxEuxFe1. 8 − 2 × O4 nanoparticles via the hydrothermal approach induced anti-cancer and anti-bacterial activities. Nanomaterials. 2019;9(11):1635.
  • Khan FA, Akhtar S, Almofty SA, Almohazey D, et al. Nanoparticles induced cell death on human breast adenocarcinoma cell line (MCF-7 cells): morphometric analysis. Biomolecules. 2018;8(2):32.
  • Almessiere MA, Slimani Y, Demir Korkmaz A, et al. Sonochemical synthesis of Dy3+ substituted Mn0.5Zn0.5Fe2-xO4 nanoparticles: structural, magnetic and optical characterizations. Ultrason Sonochem. 2020;61:104836.
  • Almessiere MA, Slimani Y, Rehman S, et al. Synthesis of Dy-Y co-substituted manganese-zinc spinel nanoferrites induced anti-bacterial and anti-cancer activities: comparison between sonochemical and sol-gel auto-combustion methods. Mater Sci Eng C Mater Biol Appl. 2020;116:111186.
  • Chandra H, Kumari P, Bontempi E, et al. Medicinal plants: treasure trove for green synthesis of metallic nanoparticles and their biomedical applications. Biocatal Agric Biotechnol. 2020;24:101518.
  • Chandra H, Patel D, Kumari P, et al. Phytomediated synthesis of zinc oxide nanoparticle of Berberis aristata: characterisation, antioxidant activity and antibacterial activity with special reference to urinary tract infection. Mater Sci Eng C. 2019;102:212–220.
  • Albarqi HA, Demessie AA, Sabei FY, Moses AS, et al. Systemically delivered magnetic hyperthermia for prostate cancer treatment. Pharmaceutics. 2020;12(11):1020.
  • Greene A, Hashemi J, Kang Y. Development of MnO2 hollow nanoparticles for potential drug delivery applications. Nanotechnology. 2021;32(2):025713.
  • Zhu D, Zhu XH, Ren SZ, et al. Anganese dioxide (MnO2) based nanomaterials for cancer therapies and theranostics. J Drug Target. 2020;2020:1–37.
  • Rehman S, Asiri SM, Khan FA, et al. Biocompatible tin oxide nanoparticles: synthesis, antibacterial, anticandidal and cytotoxic activities. ChemistrySelect. 2019;(14):4013–4017.
  • Khan FA, Akhtar S, Almohazey D, Alomari M, et al. Targeted delivery of poly (methyl methacrylate) particles in colon cancer cells selectively attenuates cancer cell proliferation. Artif Cells Nanomed Biotechnol. 2019;47(1):1533–1542.
  • Elsharif AM, Youssef TE, Al-Jameel SS, et al. Synthesis of an activatable tetra-substituted nickel phthalocyanines-4 (3H)-quinazolinone conjugate and its antibacterial activity. Adv Pharmacol Sci. 2019;2019:1–10.
  • Baig U, Gondal MA, Rehman S, et al. Facile synthesis, characterization of nano-tungsten trioxide decorated with silver nanoparticles and their antibacterial activity against water-borne gram-negative pathogens. Appl Nanosci. 2020;10(3):851–850.
  • Qureshi F, Nawaz M, Rehman S, Almofty SA, et al. Synthesis and characterization of cadmium-bismuth microspheres for the catalytic and photocatalytic degradation of organic pollutants, with antibacterial, antioxidant and cytotoxicity assay. J Photochem Photobiol, B. 2020;202:111723.
  • Rehman S, Jermy BR, Akhtar S, et al. Isolation and characterization of a novel thermophile; Bacillus haynesii, applied for the green synthesis of ZnO nanoparticles. Artif Cells Nanomed Biotechnol. 2019;47(1):2072–2082.
  • Patil JS, Dhadde SB, Chandakavathe BN. Nanostructure drug delivery system is an option to solve antimicrobial drug resistance: perspective review. In: Characterization and biology of nanomaterials for drug delivery. Amsterdam: Elsevier; 2019. pp. 165–197.
  • Singh R, Jaisingh A, Maurya IK, Salunke DB. Design, synthesis and bio-evaluation of C-1 alkylated tetrahydro-β-carboline derivatives as novel antifungal lead compounds. Bioorg Med Chem Lett. 2020 Feb 1;30(3):126869.
  • Rahdar A, Aliahmad M, Samani M, et al. Synthesis and characterization of highly efficacious Fe-doped ceria nanoparticles for cytotoxic and antifungal activity. Ceram Int. 2019;45(6):7950–7955.
  • Can-Uc B, Montes-Frausto JB, Juarez-Moreno K, et al. Light sheet microscopy and SrAl2 O4 nanoparticles codoped with Eu2+/Dy3+ ions for cancer cell tagging. J Biophotonics. 2018;11(6):e201700301.
  • Hu H, Zhang Y, Shukla S, et al. Dysprosium-modified tobacco mosaic virus nanoparticles for ultra-high-field magnetic resonance and near-infrared fluorescence imaging of prostate cancer. ACS Nano. 2017;11(9):9249–9258.
  • Mishra SK, Kannan S. Microwave synthesis of chitosan capped silver-dysprosium bimetallic nanoparticles: a potential nanotheranosis device. Langmuir. 2016;32(51):13687–13696.
  • Aygar G, Kaya M, Özkan N, et al. Preparation of silica coated cobalt ferrite magnetic nanoparticles for the purification of histidine-tagged proteins. J Phys Chem Solids. 2015;87:64–71.
  • Leal E, Dantas J, Santos P. et al. Effect of the surface treatment on the structural, morphological, magnetic and biological properties of MFe2O4 iron spinels (M = Cu, Ni, Co, Mn and Fe). Appl Surf Sci. 2018;455:635–645.
  • Leng J, Li J, Ren J, et al. Star–block copolymer micellar nanocomposites with Mn, Zn-doped nano-ferrite as superparamagnetic MRI contrast agent for tumor imaging. Mater. Lett. 2015;152:185–188. doi:https://doi.org/10.1016/j.matlet.2015.03.120.
  • Shagholani H, Ghoreishi SM, Mousazadeh M. Improvement of interaction between PVA and chitosan via magnetite nanoparticles for drug delivery application. Int J Biol Macromol. 2015;78:130–136.
  • Baharara J, Ramezani T, Divsalar A, et al. Induction of apoptosis by green synthesized gold nanoparticles through activation of caspase-3 and 9 in human cervical cancer cells. Avicenna J Med Biotechnol. 2016;8(2):75–83.
  • Khan FA, Akhtar S, Almohazey D, Alomari M, et al. Fluorescent magnetic submicronic polymer (FMSP) nanoparticles induce cell death in human colorectal carcinoma cells. Artif Cells Nanomed Biotechnol. 2018;46(sup3):S247–S253.
  • Lin-Wei W, Ai-Ping Q, Wen-Lou L, et al. Quantum dots-based double imaging combined with organic dye imaging to establish an automatic computerized method for cancer Ki67 measurement. Sci Rep. 2016;6(1):20564.
  • Mytych J, Lewinska A, Zebrowski J, et al. Gold nanoparticles promote oxidant-mediated activation of NF-κB and 53BP1 recruitment-based adaptive response in human astrocytes. Biomed Res Int. 2015;2015:304575.
  • Shiva I, Zhohreh S, Seyed Mohammad A, et al. Induction of growth arrest in colorectal cancer cells by cold plasma and gold nanoparticles. Arch Med Sci. 2015;11(6):1286–1295.